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Quantum computers in 2026

Quantum advantage

Classical computers —— Quantum advantage «—— Quantum computers

with error mitigation

Simulation cost

Circuit complexity

https://www.ibm.com/quantum/blog/quantum-advantage-era



Quantum computers in 2026

Bespoke quantum simulator O Digital algorithms

Figure 1
Quantum computers may enable three key healthcare use
cas i i i le. For

Diagnostic
assistance
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M Quantum computers in 2026

Bespoke quantum simulator O Digital algorithms
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M Quantum computers in 2026

Lex’ definition of quantum advantage: when | can use a quantum

computer to answer a question relevant to condensed matter
physicists.

To get to a quantum advantage, we need a problem that is

« Relevant/interesting
« Can be used to interface with non-QC folks
« Runs on a few qubits (< 100)

« Doesn't require long qubit coherence times



M Quantum computers in 2026

Lex’ definition of quantum advantage: when | can use a quantum
computer to answer a question relevant to condensed matter
physicists.

What about fault tolerance?

To bridge to fault tolerance, we need a problem that is

» Relevant/interesting from small to large problem sizes
» Can be used to interface with non-QC folks
« Runs on a few qubits (< 100) but can scale to larger sizes

« Doesn't require long qubit coherence times but can make use of them



M Quantum computers in 2025

Lex’ ;i// \
com (@) At -1

phys

\ Kreula EPJ Quant. Tech. (2016) /




M DMFT

Dynamical Mean Field Theory (DMFT)

Lattice Model Impurity Model Bath Discretization
&9 o
5 = ;@/ﬁ@ﬁ P,
o %6 .
d-9| 8l @ |
8 & & o
P s Pl
@ﬁ—'@‘——\%/ : :
: Batn [ A~
Orbitals Sites
Updating the s
parameters of the 2 o)
bath... 3
u—o.so N L . . .I-
4 S G = o) wl{e(t), )

Time



DFT + DMFT

Electronic structure of SrvVO, Local density of Pu,0;

R’ r X M r

FIG. 1. LDA band structure for SrVO;.

PHYSICAL REVIEW B 77, 205112 2008 J. Phys.: Condens. Matter 24 (2012) 075604 ’



M DMFT

Dynamical Mean Field Theory (DMFT)
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M DMFT on Quantum Computers

Quasiparticle Weight Z
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A-Z quantum simulation

& Your results will be very noisy

10) @™ Us UA e UB anyway
/ \ () AT —7')
Prepare state of interest Time evolve

& Circuit to prepare & Standard Trotter decomposition

interacting ground state leads to deep circuits with many

is very deep gates
& Variational approaches & Alternative approaches (QSP)

are very difficult in the requires many ancillae

presence of noise




A-Z quantum simulation

0) @" Us UA e~ Ur techniques

S [Classical post-processing }

Vs \ (a) AT —1)

Prepare state of interest Time evolve

7y (7 \
 Physics-Informed 1 * Lie-algebraic methods for

Subspace Expansions time evolution
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Bath Sites

M Ground state preparation: Fermionic Gaussian Subspace

PR
ATD. i N
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b3 ) (v b}
N 12 13 -
b% ———/ U U’ U \\ bg Hubbard model
b3 b3
Free fermions Impurity model Fully interacting
>
Advantages of a basis based on fermionic gaussian states: Complexity

» Polynomially sized calculations to find the ground state

» Easy to prepare on QC

» One basis set spans the necessary space across entire DMFT phase diagam

Image credit: 10.1016/j.chphma.2022.04.009, American Scientist
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M Ground state preparation: Eigenvector Continuation

PHYSICAL REVIEW LETTERS 121, 032501 (2018)

Featured in Physics

Eigenvector Continuation with Subspace Learning

Dillon Frar‘ne,l’2 Rongzheng He,l’2 Ilse Ipsen,3 Daniel Lee,4 Dean Lee,l’2 and Ermal Rrapaj5

» Ground state varies continuously in a parameter _
space and is spanned by a few low energy state ‘¢3> — a1 |¢1> + Q2 ‘ ¢2>

vectors.

|¢2ﬁ) lo 193) |pi) = Ui|0) o
o — U,
|$1) o
°
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Ground state preparation: Eigenvector Continuation

PHYSICAL REVIEW LETTERS 121, 032501 (2018)

Featured in Physics

Eigenvector Continuation with Subspace Learning

Dillon Frar‘ne,l’2 Rongzheng He,l’2 Ilse Ipsen,3 Daniel Lee,4 Dean Lee,l’2 and Ermal Rrapaj5
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Ground state preparation: Eigenvector Continuation

» Ground state varies continuously in a parameter _
space and is spanned by a few low energy state ’¢3 > — a1 ’¢1> T Qo ’¢2>

vectors. U
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Representing the impurity ground state:

» Sum of Gaussian states [1,2]

Eigenvector Continuation

Hard to represent

[1] 10.1007/s00220-017-2976-9

[2] 10.1103/PhysRevResearch.3.033188
[3] arXiv:2406.17037

[4] arXiv:2209.10571

X
PROED BN
k=1 Easy to represent (characterized

by 1RDMs)

(b) Chosen subspace of

» Subspace diagonalization & Eigenvector Continuation [3,4]
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Eigenvector Continuation

How many fermionic Gaussian states are needed?
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Np per impurity site
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Fermionic Gaussian Subspace

b (w)]+offset

—Im[Gﬁn
&
.

______________

______________

[ 1]

__________________

\h
o=
\h
=
I
\
\~_
r~
I
|
\
\__
'd
I
I
|
1
>
‘\
>
\
ﬂ

________________________

-
-
]
|
NEAV AN AN
Th

S —

—10.0 =75 =5

|
0 =25 00 25 50 75 100 FAw=1.562—

w

22



Fermionic Gaussian Subspace

Now that we have the tools, let’s see how it works:

» DMFT using sum of Gaussian states (SGS) (Hubbard Model w/ Bethe lattice)

X
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A-Z quantum simulation

. | Classical post-processing
0) @™ Us U4 e Us techniques

/ \ (a) At -1")

Prepare state of interest
using subspace of free
fermionic states .
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Time evolve
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M Time evolution

Simulation of a time independent spin Hamiltonian:

H=a XXIIT+DIYYI]+clIXXI]I+dIIIYY
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M Algebraic Circuit Compression

e A constructive, Lie algebra based method which leads to fixed depth circuits
for several models

e The method is scalable due to its “constructive” and “local” nature.

X X X X X X X X
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Phys. Rev. A 105, 032420 (2021), SIMAX 2022 43:3, 1084-1108, 2303.09538



Algebraic Circuit Compression

(c) (d)

Ballistic Anderson Localization
QPU Simulator Simulator
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Partial Compression

Time evolving the impurity ground state [1] 10.1103/PhysRevLett.129.070501
[2] 10.1103/PhysRevA.105.032420
» Compression of free-fermionic circuits for fixed-depth time evolution [1,2] (3] 10.1137/21M1439298
_ o _ [4] arXiv:2303.09538
=  Evolving longer in time is a matter of tuning some gate angles [5] arXiv:2508.05738

» Partial compression for impurity models:
M = match gate

ZZ = impurity
Examp/e: 1 trotter step Interaction

Bath sites

__ Impurity sites { o~ itHz2 —itHy e~ itHz2 p—

- = -—

\l/ ) Bath sites

16 - - .



Partial Compression

[1] 10.1103/PhysRevLett.129.070501
[2] 10.1103/PhysRevA.105.032420
[3110.1137/21M1439298

[4] arXiv:2303.09538

[5] arXiv:2508.05738
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M Partial Compression

[1] 10.1103/PhysRevLett.129.070501
[2] 10.1103/PhysRevA.105.032420
[3110.1137/21M1439298

[4] arXiv:2303.09538

[5] arXiv:2508.05738

Further example: 3 trotter steps

18



M Partial Compression

[1] 10.1103/PhysRevLett.129.070501
[2] 10.1103/PhysRevA.105.032420
[3110.1137/21M1439298

[4] arXiv:2303.09538

[5] arXiv:2508.05738

Further example: 3 trotter steps
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M Partial Compression

Having Gaussian states to represent our impurity ground state naturally assists partial compression!

X
(WA Bly) = > (dil A(t)Blg;)
1,7
State Prep Time Evolution (10 Trotter steps)

A

|
'HHHHHHH

19 B A



A-Z quantum simulation

(7]
0) | H | A
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Prepare state of interest
using subspace of free
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Time evolve
using circuit compression
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<¢0|X0(t)XO|¢O>

Hardware results

— Exact ibm_sherbrooke (post-selected)

== Noiseless Trotter @ ibm_sherbrooke (post-selected, rescaled)
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A-Z quantum simulation
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M A-Z quantum simulation

—

| ——

0)
//It turns out that these are positive
semi-definite (PSD) functions:
Gaa(t —t') = Tr [pA(D) A(t')]

« Then this is a PSD matrix:

(fo hi o - fu)
fiofo fio o
B5ofi fooo faa

[
I

\f2 fra fra o fo )

G(t)

021

0.1

4—4 Noise
e-e Projection
— Exact

-0.2

, PRL (2024)

{here Gaalti —t;) = fi—;
A.F. Kemper, C. Yang, E. Gu!l



M A-Z quantum simulation
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//It turns out that these are positive

(PSD) functions:
GAA(t — t/) = Tr [pA(t)TA(t’)]
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M A-Z quantum simulation
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M A-Z quantum simulation
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Hardware results

I
» Evaluation of correlation functions on a quantum computer (ibm_sherbrooke)

= Shallow circuits + error mitigation = signal we can work with

= Signal-processing used (post-selecting results, PSD de-noising

[10.1103/PhysRevLett.132.160403]) \
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[t turns out that these are positive
semi-definite (PSD) functions:

GAA(t — t/) = Tr [pA(t)TA(t’)]
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DMFT on Quantum Computers — a path to quantum advantage
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