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Quantum advantage

Classical computers —— Quantum advantage «—— Quantum computers

with error mitigation

Simulation cost

Circuit complexity

https://www.ibm.com/quantum/blog/quantum-advantage-era 2
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Bespoke quantum simulator . Digital algorithms
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Bespoke quantum simulator . Digital algorithms
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Lex’ definition of quantum advantage: when | can use a quantum

computer to answer a question relevant to condensed matter
physicists.

To get to a quantum advantage, we need a problem that is

* Relevant/interesting
« Can be used to interface with non-QC folks
« Runs on a few qubits (< 100)

» Doesn't require long qubit coherence times
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DMFT on Quantum Computers
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Lattice Model Impurity Model Bath Dlscretlzatlon
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The Rules
1. You may only use unitary operations

2. More qubits = bad

/

A

6iE0t<¢Q|B _ZHtA|¢()
/

Interfere Complete Tlme Prepare

with X ion volv f
3. More operations = bad expectatio evole .State ©

ground value interest

state Appl Appl
4. Complex qubit operations = bad PRl PRl -

excitation B excitation A
5. Your results will be very noisy anyway
0) + 1)
o @ =3
|0> ®n Us A e—iHt B

Somma, Simulating physical phenomena by
quantum networks (2002)
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Ancillaries
0) —{H]
0) @™ Us o4 z b UB
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Ancillaries
0) —{H]
|0) @™ [js A e—iHt UB

System qubits

IS(q,w)[%: PaS

Error mitigation

| > IS(a,w)?
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0) —{H] A
A ) | ) & Your results will be very noisy
’0> n US UA e Mt UB anyway
/
/ \ (a) A(T—T)

Prepare state of interest Time evolve
& Circuit to prepare & Standard Trotter decomposition

interacting ground state leads to deep circuits with many

is very deep gates
& Variational approaches & Alternative approaches (QSP)

are very difficult in the requires many ancillae

presence of noise
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0) —H] A

0) @" Us U4 e~ Mt UB techniques

s { Classical post-processing }

/ ’\ (@) A(t-1)

Prepare state of interest Time evolve
7y (7 \
* Physics-Informed » Lie-algebraic methods for
Subspace Expansions time evolution
No - )
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PHYSICAL REVIEW LETTERS 121, 032501 (2018)

Eigenvector Continuation with Subspace Learning

Dillon Frar‘ne,l’2 Rongzheng He,l’2 Ilse Ipsen,3 Daniel Lee,4 Dean Lee,l’2 and Ermal Rrapaj5

» Ground state varies continuously in a parameter L
space and is spanned by a few low energy state |¢3> — Q1 ’¢1> T a2 ’¢2>

vectors. U,
U J
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Eigenvector Continuation with Subspace Learning

Dillon Frarﬂne,l’2 Rongzheng He,l’2 Ilse Ipsen,3 Daniel Lee,4 Dean Lee,l’2 and Ermal Rrapaj5
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» Ground state varies continuously in a parameter | ¢3> = |¢1> + o |¢2>

space and is spanned by a few low energy state
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Complexity of Quantum Impurity Problems
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“The low energy state is represented as a superposition
of exp [O(b3)] fermionic Gaussian states.”

PHYSICAL REVIEW RESEARCH 3, 033188 (2021)

Quantum impurity models using superpositions of fermionic Gaussian states:
Practical methods and applications

Samuel Boutin©® and Bela Bauer
Station Q, Microsoft Corporation, Santa Barbara, California 93106 USA

“Quantum impurity models provide a natural arena for studying
the complexity of fermionic systems in an intermediate regime
interpolating between the free and the fully interacting cases.”
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Bath Sites
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_______ Bath Sites__ | Oroitale [41 _BathSites
U
b? 7 (0 b3 :
~g L \
b% ———/ 7l = (U4 o) b% Hubbard model
b3 b3
Free fermions Impurity model Fully interacting
>
Advantages of a basis based on fermionic gaussian states: Complexity

« Polynomially sized calculations to find the ground state

« Easy to prepare on QC

« One basis set spans the necessary space across entire DMFT phase diagam
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Now that we have the tools, let’s see how it works:

» DMFT using sum of Gaussian states (SGS) (Hubbard Model w/ Bethe lattice)

X
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A-Z quantum simulation

0) —H] A
) ) | N Classical post-processing
0) @™ Us U4 e 1Mt UB techniques
/
Vs \ (a) AT — 1)
Prepare state of interest Time evolve

{ Physics-Informed \

Subspace Expansions

G

.

Lie-algebraic methods for
time evolution
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Time evolution
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Simulation of a time independent spin Hamiltonian:

H=a XXIIIT+DIYYI] +clIXXI+dIIIYY

U(E) _ 6—%67‘[ — o lea XXIIIe—zeb IYYIIe—zecIIXXIe—zedIIIYY 4+ 0(62)

X X X X X
X X_ X_ X_ _ X
Y Y Y Y Y - —
U(t)_- Yo Y Y_ Y _ oY GOIXZYT —
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X_  X_ X_ _X_ _ X
Y Y Y Y Y
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e We propose a constructive, Lie algebra based method which leads to fixed
depth circuits for several models

e The method is scalable due to its “constructive” and “local” nature.

X X X X X X X X
X X_ X_ _X_ _ X X_ . X_ X
Y Y Y Y Y Y Y

Y _ Y. Y _ Y_ Y _ _ Y Y

X X X X X - "X X X

X X_ X_  _X_ _ X X X X
Y Y Y Y Y Ty Ty
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We define an abstract object called “block” which satisfies:

Fusion Commutation Turnover

33
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Fusion Commutation Turnover
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Kitaev Chain
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(c) (d)
Ballistic Anderson Localization
QPU Simulator Simulator
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Al Simulating the Impurity Model on a Quantum Computer

Time evolving the impurity ground state [1] 10.1103/PhysRevLett.129.070501
[2] arXiv:2303.09538

» Partial compression for impurity models:

Example: 1 trotter step

B M M M M M M
Bath sites 11 i I | a 1 1wl rm.
T _ M M M M
-1 B | M - M = match gate
_ - _@H, z _—itH, __ z S
_Impurity s:tes e 2 ; e 2 — : 77 = impurity
1 " ' M M interaction
\l/ D Bath sites M M M N
M M M M M M
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[1] 10.1103/PhysRevLett.129.070501
[2] arXiv:2303.09538
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[1] 10.1103/PhysRevLett.129.070501
[2] arXiv:2303.09538

Further example: 3 trotter steps
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Simulating the Impurity Model on a Quantum Computer

[1] 10.1103/PhysRevLett.129.070501
[2] arXiv:2303.09538

Further example: 3 trotter steps

e apr
M T
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Al Simulating the Impurity Model on a Quantum Computer

( a) Trotterized Trotterized State

Evolution Evolution

Baths (1) -I::

Impurity (1)—
Impurity (J)—>

Baths (1) -|:

The Rules

(b)

Controlled
Unitary
Simplification

1. You may only use unitary operations

]| e

2. More qubits = bad

(c) {F) o
LA 3. More operations = bad
Partial Compression — U °H
of Trotter Evolution = ~J 7
—a 4. Complex qubit operations = bad

(d)

5. Your results will be very noisy anyway

Compression
of State Prep

()

Compression of Trotter
Evolution into g/
State Prep /Uz
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Lom — Exact ibm_sherbrooke (post-selected)
== Noiseless Trotter -® . ibm_sherbrooke (post-selected, rescaled)
S 051
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> 00F
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A-Z quantum simulation
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{ Physics-Informed \

Subspace Expansions
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Time evolve

time evolution

/Lie-algebraic methods m
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Classical post-processing
techniques

A(t-1)
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//It turns out that these are positive
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A.F. Kemper, C. Yang, E. Gull, PRL (2024)
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A-Z quantum simulation
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£ 5
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//It turns out that these are positive
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A-Z quantum simulation
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A-Z quantum simulation
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//It turns out that these are positive

semi-definite (PSD) functions:
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PSD denoised data

G(t), normalized and offset
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» Evaluation of correlation functions on a quantum computer (ibm_sherbrooke)
= Shallow circuits + error mitigation = signal we can work with

= Signal-processing used (post-selecting results, PSD de-noising

[10.1103/PhysRevLett.132.160403]) \

— Exact == Noiseless Trotter -® Noisy Hardware ¢+ Denoised

0.5

0.0

(0| X0Xo|d0)
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Hardware results
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Prepare state of interest
using subspace of free
fermionic states
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Time evolve
using circuit compression

A

DMFT on Quantum Computers — a path to quantum advantage

Classical post-processing
technique based on PSD

projection
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