

What do you do with a quantum state once you've prepared one?

Alexander (Lex) Kemper

LANL QC Summer School 06/27/2023

Kemper Lab

Quantum materials in and out of equilibrium.

Collaborations with:

- Jim Freericks (Georgetown) ٠
- Bert de Jong, Katie Klymko, Daan Camps, Roel van ٠ Beeument, Akhil Francis (LBNL)
- Thomas Steckmann (UMD) ٠

Current members

Alexander (Lex) Kemper Principal investigator

Graduate Researcher

Graduate Researcher

Jack Howard Undergraduate Researcher

Daniel Brandon Undergraduate Researcher

Ethan Blair

Undergraduate Researcher

Norman Hogan Graduate Researcher

Your Name New lab member

- Quantum Matter meets Quantum Computing
- Response functions
 - Why we care
 - How do find them
- A new paradigm: Making the experiment part of the simulation via linear response

Why quantum computing for condensed matter?

Kemper Lab

Quantum materials in and out of equilibrium.

Time-resolved experiments

Why quantum computing for condensed matter?

Time-resolved experiments

Why quantum computing for condensed matter?

Time-resolved experiments

NC STATE Why quantum computing for condensed matter?

NC STATE UNIVERSITY Why quantum computing for condensed matter?

All these techniques eventually reach a barrier.

Quantum Matter meets Quantum Computing

PHYSICS INPUT SOFTWARE STACK **Experimental relevance:** • HARDWARE • ERROR CORRECTION • ALGORITHMS Measuring correlation functions ground state • Hamiltonian DYNAMIC • base manifold time evolution Measuring exact integer Chern • **Observables** • symmetries numbers for topological states excited states • temperature measure static STATIC Driven/dissipative systems and • desired observables OBSERVABLES fixed points (1000 Trotter observables hermal state steps) Exact time evolution via Lie • Self-consistent DMFT phase diagram for 2-site Free fermionic evolution on a 4x4 lattice on algebraic decomposition and Hubbard model on IBM hardware IBM hardware compression DMFT Convergence on Noisy Quantum Hardwa Exact Valu ermodynamics via Lee-Yang **OS** ysics-Informed Subspace cansions

https://go.ncsu.edu/kemper-lab

Q: What do you do with a quantum state once you've prepared one?

794

Ising Model

Brazilian Journal of Physics, vol. 30, no. 4, December, 2000

The Ising Model and Real Magnetic Materials

W. P. Wolf Yale University, Department of Applied Physics, P.O. Box 208284, New Haven, Connecticut 06520-8284, U.S.A.

Received on 3 August, 2000

The factors that make certain magnetic materials behave similarly to corresponding Ising models are reviewed. Examples of extensively studied materials include $Dy(C_2H_5SO_4)_3.9H_2$ (DyES), Dy3Al5O12 (DyAlG), DyPO4, Dy2Ti2O7, LiTbF4, K2CoF4, and Rb2CoF4. Various comparisons between theory and experiment for these materials are examined. The agreement is found to be generally very good, even when there are clear differences between the ideal Ising model and the real materials. In a number of experiments behavior has been observed that requires extensions of the usual Ising model. These include the effects of long range magnetic dipole interactions, competing interaction effects in field-induced phase transitions, induced staggered field effects and frustration effects, and dynamic effects. The results show that the Ising model and real magnetic materials have provided an unusually rich and productive field for the interaction between theory and experiment over the past 40 years.

10.1039/c6cp02362b

Heisenberg model

PHYSICAL REVIEW B

covering condensed matter and materials physics

Hiahliahts Accepted Referees Recent Collections Authors

Critical behavior of the three-dimensional Heisenberg antiferromagnet RbMnF₃

R. Coldea, R. A. Cowley, T. G. Perring, D. F. McMorrow, and B. Roessli Phys. Rev. B 57, 5281 - Published 1 March 1998

11

Search

Press

Q: What do you do with a quantum state once you've prepared one?

A: You measure its excitations.

Measuring Excitations

Figures courtesy of Devereaux group

Angle-resolved Photoemission (ARPES)

Resonant Inelastic X-Ray Scattering Time-resolved ARPES

Measuring Excitations

Measuring Excitations

Measuring Excitations – Response functions

Heisenberg Picture

$$i\partial_t \mathcal{O}(t) = [\mathcal{O}(t), H(t)]$$

 $i\partial_t |\psi(t)\rangle = H |\psi(t)\rangle$

$$H = H_0 + V(t)$$
$$i\partial_t |\psi(t)\rangle = V(t)|\psi(t)\rangle$$
$$i\partial_t \mathcal{O}(t) = [\mathcal{O}(t), H_0]$$

Many-Body Quantum Theory in Condensed Matter Physics

An Introduction

Henrik Bruus Karsten Flensberg

OXFORD GRADUATE TEXTS

Some Mathematics...

The time evolution operator satisfies

 $i\partial_t U(t) = V(t)U(t)$

Which is formally solved by

$$U(t) = \mathcal{T}exp\left(-i\int_{-\infty}^{t} V(\bar{t})d\bar{t}\right)$$

Or approximately(for small V) by

$$U(t) \approx 1 - i \int_{-\infty}^{t} V(\bar{t}) d\bar{t}$$

Thus the wave function is given by

$$\psi(t)\rangle\approx|\psi_0\rangle-i\int_{-\infty}^tV(\bar{t})|\psi_0\rangle d\bar{t}$$

We now pick an operator A to evaluate

$$\langle \psi(t) | \mathbf{A}(t) | \psi(t) \rangle = \langle \psi_0 | \mathbf{A}(t) | \psi_0 \rangle = -i \int_{-\infty}^t \langle \psi_0 | [\mathbf{A}(t), \mathbf{V}(\bar{t})] | \psi_0 \rangle d\bar{t}$$

Putting the time dependence outside via $\mathbf{V}(t) = h(t) \mathbf{B}$

$$\delta A(t) = -i \int_{-\infty}^{t} \langle [\mathbf{A}(t), \mathbf{B}] \rangle h(\bar{t}) d\bar{t}$$

$$\delta A(t) = \int_{\infty}^{\infty} \chi^{R}(t,\bar{t})h(\bar{t})d\bar{t}$$

Low-energy excitations: correlation functions

 $\langle A(r,t)B(r',t')\rangle$

Given some (observable) operator B at (r',t'), what is the likelihood of some (observable) operator A at (r,t)?

A(r,t)B(r',t')

$$\delta A(t) = -i \int_{-\infty}^{t} \langle [\mathbf{A}(t), \mathbf{B}] \rangle h(\bar{t}) d\bar{t} = \int_{\infty}^{\infty} \chi^{R}(t, \bar{t}) h(\bar{t}) d\bar{t}$$

Experiment	Applied field B	Measured operator A	Correlation function
AC Conductivity	Electric field	Current	[i,i]
Neutron Scattering	Spin flip	Spin flip/Z	[Sx,Sx] etc
Magnetic Susceptibility	Magnetic	Spin	[Sz,Sz], [S+,S-]
Photoemission spectroscopy	Particle removal	Particles at detector	[C ^{+,} C]
Light absorption	p.A	j	A.[p, j]
Light scattering	p.A	p.A	A1.[p1, p2].A2

$$\delta A(t) = -i \int_{-\infty}^{t} \langle [\mathbf{A}(t), \mathbf{B}] \rangle h(\bar{t}) d\bar{t} = \int_{\infty}^{\infty} \chi^{R}(t, \bar{t}) h(\bar{t}) d\bar{t}$$

THE ELECTROMAGNETIC SPECTRUM

$$\delta A(t) = -i \int_{-\infty}^{t} \langle [\mathbf{A}(t), \mathbf{B}] \rangle h(\bar{t}) d\bar{t} = \int_{\infty}^{\infty} \chi^{R}(t, \bar{t}) h(\bar{t}) d\bar{t}$$

h(t) encodes the energy range/resolution

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

-1.00

-10

$$\delta A(t) = -i \int_{-\infty}^{t} \langle [\mathbf{A}(t), \mathbf{B}] \rangle h(\bar{t}) d\bar{t} = \int_{\infty}^{\infty} \chi^{R}(t, \bar{t}) h(\bar{t}) d\bar{t}$$

8

h(t) encodes the energy range/resolution

B can be used for spatial encoding

Some More Mathematics...

The task is to calculate

$$\chi(t) := -i\theta(t) \langle \psi_0 | \mathbf{A}(t) \mathbf{B} | \psi_0 \rangle$$

$$\chi(\omega) = \sum_{j} \frac{\langle \psi_0 | \mathbf{A} | j \rangle \langle j | \mathbf{B} | \psi_0 \rangle}{\omega - E_j + E_0 + i\varepsilon}$$

Some More Mathematics...

The task is to calculate

$$\chi(r, r', t) := -i\theta(t) \langle \psi_0 | \mathbf{A}(r, t) \mathbf{B}(r') | \psi_0 \rangle$$

$$\chi(q, \omega) = \int d(r - r') e^{-iq(r - r')} \frac{\langle \psi_0 | \mathbf{A}(r) | j \rangle \langle j | \mathbf{B}(r') | \psi_0 \rangle}{\omega - E_j + E_0 + i\varepsilon}$$

RESEARCH ARTICLE | PHYSICAL SCIENCES | 8

RESEARCH ARTICLE | APPLIED PHYSICAL SCIENCES |

f 🎔 in 🖂 🧕

Alternative route to charge density wave formation in multiband systems

Hans-Martin Eiter, Michela Lavagnini, Rudi Hackl 🖾 , 🕫 , and Leonardo Degiorgi Authors Info & Affiliations Edited by M. Brian Maple, University of California at San Diego, La Jolla, CA, and approved November 15, 2012 (received for review August 24, 2012)

December 17, 2012 110 (1) 64-69 https://doi.org/10.1073/pnas.1214745110

f 🌶 in 🖂 🧟 Observation of chiral surface excitons in a topological insulator Bi₂Se₃

H.-H. Kung 💿 🖾 , A. P. Goyal, D. L. Maslov 🖾 , 🗔 and G. Blumberg 🖾 Authors Info & Affiliations Edited by Angel Rubio, Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany, and approved January 22, 2019 (received for review August 5, 2018)

February 20, 2019 116 (10) 4006-4011 https://doi.org/10.1073/pnas.1813514116

APPROACH 1: Stick with the many-body textbook

$$\chi(\mathbf{x}) = \langle \psi_0 \mathbf{A} | j \mathbf{A} | \psi_0 \rangle$$
$$\underbrace{\langle \psi_0 | \mathbf{A} | j \mathbf{A} | j \mathbf{A} | \psi_0 \rangle}_{j} = \mathbf{H}_{\mathbf{y}} + \mathbf{E}_{\mathbf{0}} + \mathbf{i} \mathbf{\varepsilon} \mathbf{B} | \psi_0 \rangle$$

APPROACH 2: Go back to our roots

$$\chi(t) = e^{iE_0t} \langle \psi_0 | \mathbf{A} e^{-i\mathbf{H}_0t} \mathbf{B} | \psi_0 \rangle$$

PRL 113, 020505 (2014)

PHYSICAL REVIEW A, VOLUME 65, 042323

Simulating physical phenomena by quantum networks

R. Somma, G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (Received 12 September 2001; published 9 April 2002)

Efficient Quantum Algorithm for Computing *n*-time Correlation Functions

PHYSICAL REVIEW LETTERS

J. S. Pedernales,¹ R. Di Candia,¹ I. L. Egusquiza,² J. Casanova,¹ and E. Solano^{1,3} ¹Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain ²Department of Theoretical Physics and History of Science, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain ³IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36, 48011 Bilbao, Spain (Received 20 January 2014; revised manuscript received 30 April 2014; published 10 July 2014)

week ending 11 JULY 2014

 $(|0\rangle + |1\rangle) |\psi_0\rangle$

$$\mathbf{P}(0) = \frac{1}{2} \left[1 + \operatorname{Re} e^{iE_0 t} \langle \psi_0 | \mathbf{A} e^{-i\mathbf{H}_0 t} \mathbf{B} | \psi_0 \rangle \right]$$

Low-energy excitations: 2-site magnons

Spin-spin correlation function for periodic Heisenberg model: Magnons!

 $\hat{H} = 2SJ\sum_k (1 - \cos(k))\hat{c}_k^{\dagger}\hat{c}_k$

Data from *ibmq_tokyo*

10.1103/PhysRevB.101.014411

Low-energy excitations: 4-site magnons

Data from *ibmq_tokyo*

Quantum Compiling

Qubits

Low-energy excitations: 4-site magnons

Spin-spin correlation function for periodic Heisenberg model: Magnons!

10.1103/PhysRevB.101.014411

Low-energy excitations: 4-site magnons

Spin-spin correlation function for periodic Heisenberg model: Magnons!

This works!

But:

- Need an ancilla with long coherence
- A and B need to be unitary & controlled
- More complex A,B need post-processing

10.1103/PhysRevB.101.014411

(A few) Quantum Algorithm(s) for χ

(Anti-)Commutators, dissipative

L. Del Re, B. Rost, M. Foss-Feig, AFK, J.K. Freericks 2204.12400

PHYSICAL REVIEW A 96, 022127 (2017)

Noninvasive measurement of dynamic correlation functions

Philipp Uhrich,^{1,2} Salvatore Castrignano,³ Hermann Uys,^{2,4} and Michael Kastner^{1,2,*} ¹National Institute for Theoretical Physics (NITheP), Stellenbosch 7600, South Africa ²Institute of Theoretical Physics, Department of Physics, University of Stellenbosch, 7600, South Africa ³Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany ⁴Council for Scientific and Industrial Research, National Laser Centre, Pretoria, Brummeria, 0184, South Africa (Received 24 November 2016) for viscid manuscript received 10 January 2017; Published 21 August 2017)

- 1. Initial state preparation
- 2. Time evolution until time t₁
- 3. Weak coupling of ancilla and system site i.
- 4. Measuring the ancilla
- 5. Time evolution until time t₂
- 6. Projective measurement at site j
- 7. Correlating the measured outcomes

Anti-commutators

10.1103/PhysRevA.96.022127

PRL 111, 147205 (2013) PHYSICAL REVIEW LETTERS

Probing Real-Space and Time-Resolved Correlation Functions

4 OCTOBER 2013

with Many-Body Ramsey Interferometry Michael Knap,^{1,2,*} Adrian Kantian,³ Thierry Giamarchi,³ Immanuel Bloch,^{4,5} Mikhail D. Lukin,¹ and Eugene Demler ¹Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA ²TAMP, Harvard-Smithsolina Center for Astrophysics, Cambridge, Massachusetts 02138, USA

²ITMMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Bussachusetts 02138, USA ³ITMMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA ³DPMC-MaxNEP, University of Geneva, 24 Quai Ernest-Ansermet CH-1211 Germany ⁵Max-Planck-Institut für Quantenoptik, Hans-Kopfernann-Sraftel 1, 83748 Garching, Germany ⁵Fakultät für Physik, Ludwig-Maximilians-Universität München, 80799 München, Germany (Received 2 July 2013; revised manuscript received 18 September 2013) published 4 October 2013)

FIG. 1 (color online). Many-body Ramsey interferometry consists of the following steps: (1) A spin system prepared in its ground state is locally excited by $\pi/2$ rotation; (2) the system evolves in time; (3) a global $\pi/2$ rotation is applied, followed by the measurement of the spin state. This protocol provides the dynamic many-body Green's function.

Commutators

10.1103/PhysRevLett.111.147205

2302.10219

A linear response framework for simulating bosonic and fermionic correlation functions illustrated on quantum computers

Efekan Kökcü ⁽⁰⁾,¹ Heba A. Labib ⁽⁰⁾,¹ J. K. Freericks ⁽⁰⁾,² and A. F. Kemper ⁽⁰⁾, * ¹Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA ²Department of Physics, Georgetown University, 37th and O Sts. NW, Washington, DC 20057 USA (Dated: February 22, 2023)

- 1. Make the excitation part of the quantum simulation
- 2. Post-process the data to get the response functions

2302.10219

A linear response framework for simulating bosonic and fermionic correlation functions illustrated on quantum computers

Efekan Kökcü ^(o),¹ Heba A. Labib ^(o),¹ J. K. Freericks ^(o),² and A. F. Kemper ^(o), * ¹Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA ²Department of Physics, Georgetown University, 37th and O Sts. NW, Washington, DC 20057 USA (Dated: February 22, 2023)

Benefits

- Any operator A,B you desire (as long as it is Hermitian*)
- No ancillas/controlled operations needed
- Many correlation functions at the same time
- Less post-processing (less noise)
- Frequency/momentum selective

Even More Mathematics...

Even More Mathematics...

$$\langle \mathbf{A}(t) \rangle = \langle \psi_0 | U(t)^{\dagger} \mathbf{A} U(t) | \psi_0 \rangle$$

= $\langle \psi_0 | \mathcal{T} e^{i \int_{-\infty}^t [\mathbf{H}_0 + \mathbf{B} h(\bar{t})] d\bar{t}} \mathbf{A} \mathcal{T} e^{-i \int_{-\infty}^t [\mathbf{H}_0 + \mathbf{B} h(\bar{t})] d\bar{t}} | \psi_0 \rangle$

A simple example: single spin with energy level difference = 2

A simple example: single spin with energy level difference = 2

A simple example: single spin with energy level difference = 2

Bosonic (commutator) response functions:

• We calculate the functional derivative in the following way. For small values of h(t):

$$A(t) = \int dt' \chi^R(t - t')h(t') + \mathcal{O}(h^2)$$

• Fourier transformation leads to

$$A(\omega) = \chi^{R}(\omega)h(\omega) + \mathcal{O}(h^{2})$$

A Bosonic Correlation function: Polarizability

$$\chi(r,t) = -i \langle \psi_0 | \delta n(r,t) \delta n(r=0,t=0) | \psi_0 \rangle$$

Measure density
on all sites
Wiggle potential
on site 0
$$\int \frac{1}{\sqrt{1-\frac{1}{2}}} \int \frac{$$

Fermionic Linear Response

$$\frac{\delta A(t)}{\delta h(t')}\Big|_{h=0} = -i\theta(t-t')\langle\psi_0|[\mathbf{A}(t),\mathbf{B}(t')]|\psi_0\rangle$$

Notice this is a commutator... ... we might also want to have an anti-commutator

$$G(t,t') = -i\theta(t-t')\langle\psi_0|\{\mathbf{A}(t),\mathbf{B}(t')\}|\psi_0\rangle$$

Why?

$$G^{R}(r_{i},t;r_{j},t') = -i\theta(t-t') \langle \psi_{0}|\{c_{i}(t),c_{j}^{\dagger}(t')\}|\psi_{0}\rangle$$

Fermionic creation/ annihilation operators

Application of Green's functions: DMFT

T. Steckmann et al., arXiv:2112.05688

Application of Green's functions: DMFT

T. Steckmann et al., arXiv:2112.05688

2-site Hubbard DMFT (5 qubits)

2-site Hubbard DMFT

T. Steckmann et al., arXiv:2112.05688

Even Whore 1 Martiliern aperstor Anethode done yet?

$G(t,t') = -i\theta(t-t')\langle\psi_0|\{\mathbf{A}(t),\mathbf{B}(t')\}|\psi_0\rangle$

Even More Mathematics... Are we done yet?

$$G(t,t') = -i\theta(t-t')\langle\psi_0|\{\mathbf{A}(t),\mathbf{B}(t')\}|\psi_0\rangle$$

• The method relies on the following identity:

$$[\mathbf{A}(t)\mathbf{P}, \mathbf{B}(t')] = \mathbf{A}(t)\{\mathbf{P}, \mathbf{B}(t')\} - \{\mathbf{A}(t), \mathbf{B}(t')\}\mathbf{P}$$

• If ${\bf P}$ satisfies $\{{\bf B}(t),{\bf P}\}=0,~~{\bf P}|\psi_0\rangle=s|\psi_0\rangle$ with $~s\neq 0$

$$\begin{aligned} \langle \psi_0 | [\mathbf{A}(t)\mathbf{P}, \mathbf{B}(t')] | \psi_0 \rangle &= -\langle \psi_0 | \{\mathbf{A}(t), \mathbf{B}(t')\} \mathbf{P} | \psi_0 \rangle \\ &= -s \langle \psi_0 | \{\mathbf{A}(t), \mathbf{B}(t')\} | \psi_0 \rangle \\ \end{aligned}$$
$$\begin{aligned} G(t, t') &= \frac{i}{s} \theta(t - t') \langle \psi_0 | [\mathbf{A}(t)\mathbf{P}, \mathbf{B}(t')] | \psi_0 \rangle \end{aligned}$$

Even More Mathematics... Are we done yet?

• Finally, if \mathbf{P} satisfies $[\mathcal{H}_0,\mathbf{P}]=0$, we have $\mathbf{P}=\mathbf{P}(t)$, which leads to

$$G(t,t') = -i\theta(t-t')\langle\psi_0|\{\mathbf{A}(t),\mathbf{B}(t')\}|\psi_0\rangle$$

$$=\frac{i}{s}\theta(t-t')\langle\psi_0|[\mathbf{A}(t)\mathbf{P}(t),\mathbf{B}(t')]|\psi_0\rangle$$

• This allows us to measure anti-commutators via the previous method

Example: retarded Green's function

$$G^{R}(r_{i},t;r_{j},t') = -i\theta(t-t') \langle \psi_{0}|\{c_{i}(t),c_{j}^{\dagger}(t')\}|\psi_{0}\rangle$$

- The operator $\mathbf{P} = Z_1 Z_2 \dots Z_n$ satisfies $\{\mathbf{B}(t), \mathbf{P}\} = 0$
- For systems that preserves particle number parity: $[\mathcal{H}_0, \mathbf{P}] = 0$
- If state $|\psi_0\rangle$ has definite parity (even or odd particle number), then $\mathbf{P}|\psi_0\rangle = s|\psi_0\rangle$ with s = +1 or -1
- This works both for particle conserving and superconducting systems

Option 2: Post selection method:

Option 2: Post selection method:

• Assume that the Hamiltonian is particle conserving, and the ground state has a definite number of particles (which we denote with N).

Post-selection on particle number gives us $G_{ij}^{<}(t) = i \langle \psi_0 | c_j^{\dagger}(0) c_i(t) | \psi_0 \rangle$ $G_{ij}^{>}(t) = -i \langle \psi_0 | c_i(t) c_j^{\dagger}(0) | \psi_0 \rangle$

Which we can combine to the desired anti-correlation function.

Su-Schrieffer-Heeger model for polyacetylene

 $G^{R}(r_{i},t;r_{j},t') = -i\theta(t-t') \langle \psi_{0}|\{c_{i}(t),c_{j}^{\dagger}(t')\}|\psi_{0}\rangle$

Su-Schrieffer-Heeger model for polyacetylene

Compressed circuit run on ibm_auckland

Choose B to create a momentum eigenstate

 $G_k^R(t) = -i\theta(t) \langle \psi_0 | \{ c_k(t), c_k^{\dagger}(0) \} | \psi_0 \rangle$

Su-Schrieffer-Heeger model for polyacetylene

Compressed circuit run on *ibm_auckland*

$-R_x$ $-R_x$	$[\eta \cos(0k)] = R_z$	R_z XY R_z R_y \uparrow
R_x	$[\eta \cos(2k)] \qquad \qquad$	
$-R_x$	$[\eta \cos(3k)] \qquad \qquad$	
$-R_x$ $-R_x$	$[\eta \cos(5k)]$ R_z R_z XY R_z XY	
$-R_x$	$[\eta \cos(7k)] - R_z$	

Choose **B** to create a momentum eigenstate

 $G_k^R(t) = -i\theta(t) \langle \psi_0 | \{ c_k(t), c_k^{\dagger}(0) \} | \psi_0 \rangle$

Su-Schrieffer-Heeger model for polyacetylene

Compressed circuit run on *ibm_auckland*

+	$\begin{array}{c} R_x \left[\eta \cos(0k) \right] \\ \hline R_x \left[\eta \cos(1k) \right] \\ \hline R_x \left[\eta \cos(2k) \right] \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} R_z \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} R_z \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} R_z \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} R_z \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} R_z \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} R_z \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} R_z \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} R_z \\ \hline \end{array} \\ \begin{array}{c} R_z \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} R_z \\ \hline \end{array} \\ \begin{array}{c} R_z \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} R_z \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} R_z \\ \hline \end{array} \\ \begin{array}{c} R_z \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} R_z \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} R_z \\ \hline \end{array} \\ \begin{array}{c} R_z \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} R_z \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} R_z \\ \hline \end{array} \\ \\ \end{array} \\ \begin{array}{c} R_z \\ \hline \end{array} \\ \\ \end{array} \\ \begin{array}{c} R_z \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} R_z \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} R_z \\ \end{array} \\ \begin{array}{c} R_z \\ \\ \end{array} $ \\ \\ \end{array} \\ \\ \end{array}	$\begin{array}{c} R_z \\ R_z \end{array} XY \begin{array}{c} R_z \\ R_z \end{array}$
-	$\begin{array}{c c} R_x \left[\eta \cos(3k) \right] \\ \hline R_x \left[\eta \cos(4k) \right] \\ \hline R_z \\ \hline XY \\ \hline R_z \\ \hline R_z \\ \hline XY \\ \hline R_z \\ \hline R_z \\ \hline XY \\ \hline R_z \\ \hline R_z \\ \hline XY \\ \hline R_z \\ \hline XY \\ \hline R_z \\ \hline XY \\ \hline R_z \\ \hline R_z \\ \hline XY \\ \hline R_z \\ \hline R_z$	A
	$\begin{array}{c c} R_x \left[\eta \cos(5k) \right] & R_z \\ \hline R_x \left[\eta \cos(6k) \right] & R_z \\ \hline R_z \left[\eta \cos(7k) \right] & R_z \end{array} \\ \hline XY \end{array} \xrightarrow{\begin{array}{c c} R_z \\ R_z \end{array} } XY \xrightarrow{\begin{array}{c c} R_z \\ R_z \\ R_z \end{array} } XY \xrightarrow{\begin{array}{c c} R_z \\ R_z \\ R_z \end{array} } XY \xrightarrow{\begin{array}{c c} R_z \\ R$	

Choose **B** to create a momentum eigenstate

$$G_k^R(t) = -i\theta(t) \langle \psi_0 | \{ c_k(t), c_k^{\dagger}(0) \} | \psi_0 \rangle$$

Why does this work so well?

$$\mathbf{B} = \sum_{i} 2\cos(kr_i) \left[c_i + c_i^{\dagger} \right]$$

Data from noisy simulator with one/two qubit noise of 1% and 10%

 $t \rightarrow \omega$

 $r \rightarrow k$

- Ancilla free
- Momentum and frequency selectivity
- Both bosonic and fermionic correlators
- More noise robust compared to existing methods

E. Kökcü, H.Labib, J.K. Freericks, AFK., arXiv:2302.10219

Quantum Matter meets Quantum Computing

- Experimental relevance: Measuring correlation functions
- Measuring exact integer Chern
 numbers for topological states
- Driven/dissipative systems and fixed points (1000 Trotter steps)
- Time evolution via Lie
 algebraic decomposition and
 compression
- Thermodynamics via Lee-Yang Zeros
- Physics-Informed Subspace Expansions
 65