

Lie Algebraic generation of quantum circuits

Alexander (Lex) Kemper

Department of Physics North Carolina State University https://go.ncsu.edu/kemper-lab

ACS Fall Meeting 2022 08/23/2022

With:

Eugene Dumitrescu & Yan Wang (**ORNL**) Daan Camps, Roel van Beeumen, Lindsay Bassman, Bert de Jong (**LBNL**) Jim Freericks (**Georgetown**)

Quantum Matter meets Quantum Computing

- Experimental relevance: Measuring correlation functions
- Preparing/measuring topological states
- Driven/dissipative systems and fixed points
- Time evolution via Lie algebraic decomposition and compression
- Thermodynamics
- Physics-Informed Subspace
 Expansions

2

Low-energy excitations: correlation functions

 $\langle A(r,t)B(r',t')\rangle$

Given some (observable) operator B at (r',t'), what is the likelihood of some (observable) operator A at (r,t)?

A(r,t)B(r',t')

Low-energy excitations: correlation functions

Conductivity

 $\langle j(r,t)j(r',t')\rangle$

Single-particle spectra (ARPES) $\langle c(r,t)c^{\dagger}(r',t')\rangle$

Spin-resolved neutron scattering

$$\sigma_{\alpha\beta}^{x,y,z} \langle S_{\alpha}(r,t) S_{\beta}(r',t') \rangle$$

$$A(r,t) = B(r',t')$$

NC STATE UNIVERSITY Low-energy excitations: correlation functions

Express the correlation function through the Lehmann representation:

$$\mathcal{C}(t) = \langle \Phi | \hat{U}^{B}(t) \hat{U}^{A}(0) | \Phi
angle = \sum_{m} e^{-i(E_{m}-E_{0})t} \langle \phi_{0} | U^{B} | m
angle \langle m | U^{A} | \phi_{0}
angle.$$

Quantum circuit:

NC STATE UNIVERSITY

Low-energy excitations: 2-site magnons

Spin-spin correlation function for periodic Heisenberg model: Magnons!

 $\hat{H} = 2SJ\sum_k (1 - \cos(k))\hat{c}_k^{\dagger}\hat{c}_k$

Data from *ibmq_tokyo*

Low-energy excitations: 4-site magnons

Data from *ibmq_tokyo*

Low-energy excitations: 4-site magnons

Spin-spin correlation function for periodic Heisenberg model: Magnons!

10.1103/PhysRevB.101.014411

Low-energy excitations: 4-site magnons

Q: Why does this work?

A: Constant depth time evolution circuits

NC STATE UNIVERSITY Low-energy excitations: correlation functions

Express the correlation function through the Lehmann representation:

$$\mathcal{C}(t) = \langle \Phi | \hat{U}^{B}(t) \hat{U}^{A}(0) | \Phi
angle = \sum_{m} e^{-i(E_{m}-E_{0})t} \langle \phi_{0} | U^{B} | m
angle \langle m | U^{A} | \phi_{0}
angle.$$

Quantum circuit:

Consider 5 spin Kitaev chain:

 $\mathcal{H} = a XXIII + b IYYII + c IIXXI + d IIIYY$ $U(t) = e^{-it\mathcal{H}} \neq e^{-ita XXIII} e^{-itb IYYII} e^{-itc IIXXI} e^{-itd IIIYY}$

Trotter Approximation

Consider 5 spin Kitaev chain:

$$\bullet \xleftarrow{\times} \bullet \xleftarrow{} \bullet \bullet \xleftarrow{} \bullet \bullet \textcircled{} \bullet \xleftarrow{} \bullet \bullet \textcircled{} \bullet \xleftarrow{} \bullet \bullet \textcircled{} \bullet \textcircled{} \bullet \xleftarrow{} \bullet \bullet \textcircled{} \bullet \textcircled{}$$

 $\mathcal{H} = a XXIII + b IYYII + c IIXXI + d IIIYY$

$$U(\epsilon) = e^{-i\epsilon \mathcal{H}} = e^{-i\epsilon a \, XXIII} e^{-i\epsilon b \, IYYII} e^{-i\epsilon c \, IIXXI} e^{-i\epsilon d \, IIIYY} + O(\epsilon^2)$$

Trotter Approximation

Consider 5 spin Kitaev chain:

$$\bullet \xleftarrow{\times} \bullet \xleftarrow{} \bullet \textcircled{} \bullet \xleftarrow{} \bullet \xleftarrow{} \bullet \textcircled{} \bullet \xleftarrow{} \bullet \textcircled{} \bullet \xleftarrow{} \bullet \textcircled{} \bullet \textcircled$$

 $\mathcal{H} = a XXIII + b IYYII + c IIXXI + d IIIYY$

 $U(\epsilon) = e^{-i\epsilon \mathcal{H}} = e^{-i\epsilon a \, XXIII} e^{-i\epsilon b \, IYYII} e^{-i\epsilon c \, IIXXI} e^{-i\epsilon d \, IIIYY} + O(\epsilon^2)$

13

Trotter Approximation

Consider 5 spin Kitaev chain:

 $\mathcal{H} = a \ XXIII + b \ IYYII + c \ IIXXI + d \ IIIYY$

 $U(\epsilon) = e^{-i\epsilon \mathcal{H}} = e^{-i\epsilon a \, XXIII} e^{-i\epsilon b \, IYYII} e^{-i\epsilon c \, IIXXI} e^{-i\epsilon d \, IIIYY} + O(\epsilon^2)$ Х Χ Χ Χ Χ X Х Х × $U(t) = \cdot$ X X X X X Х 14

Improving Trotter Expansions

• Symmetry protection to reduce trotter error (*)

Adaptive product formula to reduce number of trotter steps needed (**)

$$e^{-iH\delta t}|\Psi(t)\rangle \approx T(\vec{O}',\vec{\Lambda}',t)|\Psi_0\rangle$$

(*) Tran, M. C., Su, Y., Carney, D., & Taylor, J. M. (2021), PRX Quantum, 2(1), 010323. (**) Zhang, Z. J., Sun, J., Yuan, X., & Yung, M. H. (2020), arXiv:2011.05283.

15

NC STATE UNIVERSITY

Variational Fast Forwarding

- QAQC on one trotter step to diagonalize the Hamiltonian
- then simulate for whichever simulation time you want with a fixed depth circuit!

(*) Cirstoiu, C., Holmes, Z., Iosue, J., Cincio, L., Coles, P. J., & Sornborger, A. (2020), npj Quantum Information, 6(1), 1-10.

Unitary Synthesis: Cartan Decomposition

Cartan decomposition found its application in generic unitary synthesis for quantum circuits (*,**)

 $\mathfrak{g}=\mathfrak{m}\oplus\mathfrak{k}$ $[\mathfrak{k},\mathfrak{k}]$ ŧ \subset $[\mathfrak{m},\mathfrak{k}]$ =m $[\mathfrak{m},\mathfrak{m}]$ $\subset \mathfrak{k}.$

It is optimal for SU(4) (2 qubits)! (***)

- $\mathfrak{su}(2^n)$ \mathfrak{k}_n \mathfrak{m}_n $I^{n-1} \otimes X$ $I^{n-1}\otimes Y$ $I^{n-1} \otimes Z$ $\widehat{\mathfrak{k}_n}$ $\mathfrak{su}\left(2^{n-1}
 ight)\otimes Z$ $\mathfrak{su}(2^{n-1})\otimes X \mid \mathfrak{su}(2^{n-1})\otimes Y$ $\mathfrak{su}(2^{n-1})\otimes I$ $\mathfrak{k}_{n,1}$ $\mathfrak{k}_{n,0}$ U IJ \mathfrak{h}_n \mathfrak{f}_n
 - $I^{n-1} = I^{\otimes (n-1)} = \underbrace{I \otimes \ldots \otimes I}_{n-1}$

(**) H. N. Sa Earp and J. K. Pachos, Journal of Mathematical Physics 46, 082108 (2005), doi.org/10.1063/1.2008210. (*) N. Khaneja and S. J. Glaser, Chemical Physics 267, 11 (2001). (***) G. Vidal and C. M. Dawson, Physical Review A 69, 010301 (2004).

What can you do with fixed depth time evolution circuits?

T. Steckmann et al., arXiv:2112.05688

2-site Hubbard DMFT (5 qubits)

NC STATE UNIVERSITY

2-site Hubbard DMFT

T. Steckmann et al., arXiv:2112.05688

Cartan Decomposition	Algebraic Compression
_ett. 129, 070501 (2022) , arXiv:2112.05688	²⁰ Phys. Rev. A 105, 032420 (2021), SIMAX 2022 43:3, 1084-1108

Phys. Rev. L <u>т (</u> 2

Cartan Decomposition

- Produces exact, fixed depth time evolution unitaries for any model.
- Produces unitaries for linear combinations of (anti)-Hermitian operators (UCC factors).
- We have code available! https://github.com/kemperlab/cartan-quantum-synthesizer

Phys. Rev. Lett. 129, 070501 (2022) , arXiv:2112.05688

Algebraic Compression

Phys. Rev. A 105, 032420 (2021), SIMAX 2022 43:3, 1084-1108

Cartan Decomposition

- Produces exact, fixed depth time evolution unitaries for any model.
- Produces unitaries for linear combinations of (anti)-Hermitian operators (UCC factors).
- We have code available! https://github.com/kemperlab/cartan-quantum-synthesizer

Phys. Rev. Lett. 129, 070501 (2022) , arXiv:2112.05688

Algebraic Compression

- Compressed Trotter circuits down to a shallow fixed depth circuit for 1-D nearest neighbor TFXY, TFIM, XY and Kitaev models.
- Based on 3 easy to check, local properties.
- We have code available! Check F3C, F3C++ and F3Cpy at https://github.com/QuantumComputingLab

Phys. Rev. A 105, 032420 (2021), SIMAX 2022 43:3, 1084-1108

Approach #1: Cartan Decomposition

Approach #1: Cartan Decomposition

Exact simulation of a time independent spin Hamiltonian: $\mathcal{H} = \sum_j h_j \sigma^j$

Time evolution operator:

Single exponential circuit:

Main Problem

Exact simulation of a time independent spin Hamiltonian: $\mathcal{H} = \sum_{j} h_{j} \sigma^{j}$

Time evolution operator:

Single exponential circuit:

 $\bar{\sigma}^i \in \mathfrak{su}(2^n)$

 $U(t) = e^{-it\mathcal{H}} = \prod$

Two main issues:

 $e^{i\kappa_i\bar{\sigma}^i}$

Main Problem

Exact simulation of a time independent spin Hamiltonian: $\mathcal{H} = \sum_{j} h_{j} \sigma^{j}$ Time evolution operator: Single exponential circuit: $e^{i\theta IXZYI} = \frac{\Pi}{e^{i\theta IXZYI}} = \frac{\Pi}{e^{i\theta IXZYI}}$

2) What cost function? Norm of the difference?

26

Hamiltonian Algebra

• We don't have to work in full $\mathfrak{su}(2^n)$

$$\mathcal{H} = \sum_{j} h_{j} \sigma^{j}$$
$$U(t) = e^{-it\mathcal{H}} = \prod_{\bar{\sigma}^{i} \in \mathfrak{su}(2^{n})} e^{i\kappa_{i}\bar{\sigma}^{i}}$$

NC STATE UNIVERSITY

Hamiltonian Algebra

- We don't have to work in full $\mathfrak{su}(2^n)$
- Get the closure of the Pauli strings within the Hamiltonian under commutation i.e. the "Hamiltonian algebra" g(H)

$$\mathcal{H} = \sum_{j} h_{j} \sigma^{j}$$
$$U(t) = e^{-it\mathcal{H}} = \prod_{\substack{\overline{\sigma}^{i} \in \mathfrak{su}(2^{n})\\ \overline{\sigma}^{i} \in \mathfrak{g}(\mathcal{H})}} e^{i\kappa_{i}\overline{\sigma}^{i}}$$

Main Problem

2) What cost function? Norm of the difference?

Cartan Decomposition and KHK Theorem

$$f(K) = \left\langle KvK^{\dagger}H\right\rangle$$

where

v

$$K = e^{\theta_1 k_1} e^{\theta_2 k_2} \dots e^{\theta_{n_k} k_{n_k}}$$
$$= h_1 + \pi h_2 + \pi^2 h_3 + \dots + \pi^{n_h - 1} h_{n_h}$$

Then for any local minimum or maximum of the function f denoted by K_0 will satisfy

 $K_0^{\dagger}HK_0 \in \mathfrak{h}$

30

NC STATE UNIVERSITY

Algorithm

Generate Hamiltonian algebra g(H)
 Find a Cartan decomposition where H is in m
 Obtain parameters via local minimum of f(K)
 Build the circuit using K and h
 Then simulate for any time you want!

$$f(K) = \langle KvK^{\dagger}, \mathcal{H} \rangle$$

NC STATE UNIVERSITY

Approach #1: Cartan Decomposition

Approach #2: Algebraic Circuit Compression

Approach #2: Algebraic Circuit Compression

- We propose a **constructive**, Lie algebra based method which leads to fixed depth circuits for several models
- The method is **scalable** due to its "constructive" and "local" nature.

Approach #2: Algebraic Circuit Compression

We define an abstract object called "block" which satisfies:

Blocks will be mapped to certain quantum gates in a model specific way.

These properties are **local**! One needs to check only the neighbor gates to apply them, not the whole circuit.

NC STATE UNIVERSITY

Approach #2: Algebraic Circuit Compression

NC STATE UNIVERSITY	Examples	
Kitaev Chain	Transverse Field Ising	Transverse Field XY
$2i-1 = \begin{array}{c} 2i-1 - \mathbf{X} \\ \mathbf{X} \\ 2i - \mathbf{X} \end{array}$	$2i-1 = i - Z$ $i - Z$ $2i = \begin{bmatrix} i - X \\ i+1 \end{bmatrix} X$	$i = \begin{bmatrix} i - Z - X & Y \\ X & Y \\ i + 1 - Z & X & Y \\ Z - \end{bmatrix}$
$2i = \begin{array}{c} 2i - \mathbf{Y} \\ \mathbf{Y} \\ 2i+1 - \mathbf{Y} \end{array}$		
n(n-1)/2 XX gates	n(n-1) XX gates	n(n-1) XX gates
n(n-1) CNOTs	2n(n-1) CNOTs	n(n-1) CNOTs

Main Example: Ising Adiabatic State Preparation

$$H = -(Z_1 + Z_2 + Z_3)$$
$$|\psi\rangle = |000\rangle$$

$$H = J(t)(X_1X_2 + X_2X_3) - (Z_1 + Z_2 + Z_3)$$

Main Example: Adiabatic State Preparation

$$H = -(Z_1 + Z_2 + Z_3)$$
$$|\psi\rangle = |000\rangle$$

 $H = J(t)(X_1X_2 + X_2X_3) - (Z_1 + Z_2 + Z_3)$

Approach #1: Algebraic Circuit Compression

 Compressed circuits have 20 CNOT gates in total whereas Trotter circuits have increasing number of CNOTs as simulation time increases

Phys. Rev. A 105, 032420 (2021), SIMAX 2022 43:3, 1084-1108

Cartan Decomposition

- Produces exact, fixed depth time evolution unitaries for any model.
- Produces unitaries for combinations of (anti)-Hermitian operators (UCC factors).
- We have code available! https://github.com/kemperlab/cartan-quantum-synthesizer

Phys. Rev. Lett. 129, 070501 (2022) , arXiv:2112.05688

Algebraic Compression

- Compressed Trotter circuits down to a fixed depth circuit for 1-D nearest neighbor TFXY, TFIM, XY and Kitaev models.
- Based on 3 easy to check, local properties.
- We have code available! Check F3C, F3C++ and F3Cpy at https://github.com/QuantumComputingLab

Phys. Rev. A 105, 032420 (2021), SIMAX 2022 43:3, 1084-1108