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Figure 1 |Atomic structure, electronic band structure, and absorption spectrum of monolayer MoS2. a, Representation of the trigonal prismatic structure
of monolayer MoS2. b, Honeycomb lattice structure with each sublattice occupied by a Mo and two S atoms. c, The lowest-energy conduction bands and
the highest-energy valence bands labelled by the z-component of their total angular momentum near the K and K0 point of the Brillouin zone. The spin
degeneracy at the valence-band edges is lifted by spin–orbit interactions. The valley and spin degrees of freedom are coupled. Under left-circularly
polarized excitation, only the K-valley is populated, whereas under right-circularly polarized excitation, only the K0-valley is populated. d, Absorption
spectrum of undoped monolayer MoS2 with two prominent resonances, known as the A and B excitons. The inset shows the drain–source current Ids,
under a Vds = 40 mV bias voltage, as a function of back-gate voltage Vg. It is characteristic of an n-doped semiconductor that can be turned off at large
negative gate voltages.
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Figure 2 |Doping dependence of the optical properties of a monolayer MoS2 FET. a, Absorption and photoluminescence spectra (red lines) in the range
of 1.8–2.0 eV for the indicated back-gate voltages. The exciton (A) and trion (A�) resonances behave differently with gate voltage. Left: Absorption
spectra, with the dashed blue lines as a guide to the eye for the threshold energies of A and A� features. The green lines are power-law fits to the
experimental results, as described in the main text, with the A and A� components shown as the blue lines. Right: The photoluminescence spectra of the A
and A� features are fit to Lorentzians (green lines). The dashed blue line indicates the absorption peak of the A� resonance and the arrows show the
doping-dependent Stokes shift of the trion photoluminescence. b, Threshold energies of the trion !A� (black symbols) and the neutral exciton !A (red
symbols), determined from the absorption spectra, as a function of gate voltage (upper axis) and Fermi energy EF (lower axis). c, The difference in the
exciton and trion energies, !A �!A� (symbols), as a function of Fermi energy EF. The red line, a linear fit to the EF-dependence, has a slope of 1.2 and an
intercept of 18 meV. The latter determines the trion binding energy. Inset: representation of the dissociation of a trion into an exciton and an electron at the
Fermi level.
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with binding energy El
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scribe the bulk TMDC (see Fig. 1). The Hamiltonian for
such a model is H = H0 +W with

H0 =
X

k

✏v,k a
†(k)a(k) +

X

k

✏c,k+w b
†(k)b(k)

W =
X

k,k0,q

V (q)b†(k + q)a†(k0
� q)a(k0)b(k)

(1)

where w is the location of conduction band minima
with respect to valence band maxima, b

†(k)/b(k) is
the creation/annihilation operator for an electron in
conduction band with momentum k+w and a

†(k)/a(k)
is the creation/annihilation operator for an electron in
valence band with momentum k. The dispersion for the
bands are

✏v,k = �
~2k2

2mv
✏c,k = Eg +

~2(k �w)2

2mc
(2)

where mc/mv are the e↵ective masses for the conduc-
tion/valence band. The exciton creation operator for one
with center of mass (COM) momenta Q and state � can
be written as a superposition of the electron-hole pair
creation operators

A
†
�(Q,w) =

X

p

��(p,w)b†(p+ ↵Q)a(p� �Q) (3)

where ��(p,w) is the envelope wavefunction for the rel-
ative momenta given by


p
2

2µ
� E�

�
��(p,w) =

X

p0

V (p� p0)��(p
0
,w) (4)

given µ
�1 = m

�1
c +m

�1
v is the reduced mass of electron-

hole pair. This is analogous to the hydrogen atom
Schrodinger equation where the relative coordinate of the
two body system is quantized. The equation of motion
the exciton creation operator is given by [see Supplement
for details]

i
@

@t
A

†(Q,w) =


�Eg � E� �

Q2

2M

�
A

†(Q,w) (5)

where E� < 0 is the exciton binding energy. Therefore
an exciton with quantum number � and COM momenta
Q has the energy

E�,Q = Eg + E� +
Q2

2M
(6)

To evaluate the ARPES expression, we follow the the-
oretical description as developed by Freericks et. al. to
consider the quasi-equilibrium situation where excitons
have formed in the system[19]. The system is described
in the distant past (t ! �1) by the Hamiltonian H

and the many-body eigenstates characterized by En and
| ni:

H| ni = En| ni (7)

FIG. 1. DFT electronic structure of a indirect gap bulk semi-
conductor - MoSe2. The dashed box demarcates the two-band
e↵ective model for the indirect gap semiconductor. The CB
minima and VB maxima are separated in momentum space
by a wavevector w.

Upon the action of the pump, the Hamiltonian is de-
scribed by Hpump(t) and the eigenstates at t0 is given
by

| I
n(t0)i = U(t0,�1)| ni (8)

where the time-evolution operator is defined as

U(t, t0) = Tt exp

✓
�
i

~

Z t

t0

dt1Hpump(t1)

◆

= exp(�iH(t� t0)) when Hpump(t) = H

(9)

Upon the additional action of the probe, the Hamiltonian
is described by Hpump(t) +Hprobe(t) and the eigenstates
at t is given by

| F
n (t)i = Ū(t, t0)| 

I
n(t0)i (10)

where the time-evolution operator is defined as

Ū(t, t0) = Tt exp

✓
�
i

~

Z t

t0

dt1 [Hpump(t1) +Hprobe(t1)]

◆

(11)
In the limit of weak probe,

Ū(t, t0) ' U(t, t0)�
i

~

Z t

t0

dt1U(t, t1)Hprobe(t1)U(t1, t0)

(12)
The probability to find a photoelectron with momenta k

in an interval dk in solid angle d⌦k is

= lim
t!1

k
2
dkd⌦k

(2⇡)3
P (t); P (t) =

X

n,m

⇢n|h m;k| F
n (t)i|

2

(13)
⇢n is the density matrix corresponding to occupation of
the state n. The probe Hamiltonian component describ-
ing the photoemission of an electron from an exciton

Exciton Wavefunction
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Non-equilibrium excitons
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Given a macroscopic occupation of excitons, what 
should you see in electron spectroscopy?
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ARPES from Excitons

Bulk MoSe2

Resonant (1.58 eV excitation)
Non-resonant (3.16 eV excitation)

J. Buss et al. CLEO 2017



ARPES from Excitons



ARPES Theory

E. PERFETTO, D. SANGALLI, A. MARINI, AND G. STEFANUCCI PHYSICAL REVIEW B 94, 245303 (2016)

are expelled from the conduction band ν = c, then we can
restrict the sum in Eq. (10) to ν = ν ′ = c using

"emb,R
cc,k (t,t̄) = −iθ (t − t̄)|a0Dck|2e−iεf k(t−t̄)

×(eiω0(t−t̄) + c.c.). (11)

To lowest order in the probe field, G<
cc,k‖

depends on the time
difference only (the system is in a stationary state). Inserting
Eq. (11) into Eq. (10) we then find

I (k,t) = −2|a0Dck|2
∫

dω

2π
iG<

cc,k‖
(ω)

× Re
[ ∫ t

0
dt̄ (e−i'−(t−t̄) + e−i'+(t−t̄))

]
,

where we used that iG<
cc,k‖

(ω) is real and we defined '± =
εf k ± ω0 − ω. Performing the time integral and taking into
account that limt→∞

sin 't
'

= πδ('), the long-time limit of the
photocurrent is given by

I (k) ≡ lim
t→∞

I (k,t)

= −i|a0Dk|2
[
G<

cc,k‖
(εf k − ω0) + G<

cc,k‖
(εf k + ω0)

]
.

(12)

Comparing this result with Eq. (1) we see that a proper
selection of Feynman diagrams evaluated with an excited qp
Green’s function are required to capture excitonic features
in the energy-resolved photocurrent. In fact, G<

cc,k‖
(ω) is

nonvanishing at the removal energies of the excited solid. In
the next two sections we develop a diagrammatic treatment to
tackle this problem.

IV. FAILURE OF QUASIPARTICLE AND GW
APPROXIMATIONS

In order to avoid the numerically expensive implementation
of the two-times Kadanoff-Baym equations [48,70,77–83],
the lesser Green’s function is usually calculated from the
generalized Kadanoff-Baym ansatz [84–90] (GKBA),

G<(t,t ′) = iGR(t,t ′)G<(t ′,t ′) − iG<(t,t)GA(t,t ′), (13)

where GR(t,t ′) = [GA(t ′,t)]† is the retarded Green’s function
in some qp approximation, e.g., HF or HSEX. It is well
established that the equal-time HSEX G< accurately describes
virtual excitons in photoabsorption [the photoabsorption spec-
trum is proportional to

∫
dteiωtG<(t,t)] [58]. Real excitons,

however, arise from the Fourier transform of G<(t,t ′) with
respect to the relative time (t − t ′); therefore, real excitons
hide in GR(t,t ′) and not in G<(t,t). In any qp approximation
GR(t,t ′) is a single oscillatory exponential with frequency
given by the qp energy. Thus, the Fourier transform G<(ω) is
peaked only at the qp energy and does not contain information
on the exciton peak. The very same approximation which
accurately describes virtual excitons (in photoabsorption) fails
to describe real excitons (in TR-PE). The situation does
not improve at the GW level. In fact, in insulators and
semiconductors the main effect of the GW self-energy is to
renormalize the qp energies. Dynamical effects (due to the
dependence on frequency) appear at very high energy and are
associated to plasmonic excitations, not to excitons. Hence, the

retarded Green’s function in the GW approximation maintains
a qp character.

To make progress one must abandon the qp approximation
and calculate GR using a many-body self-energy " with
vertex corrections, as it has been pointed out in Refs. [60,61].
We emphasize that " is distinct from the embedding self-
energy defined in Eq. (9): The former is a functional of
the Green’s function and Coulomb interaction, whereas the
latter is an explicit functional of the probe pulse. Hence,
" is nonvanishing even without a probe, whereas "emb is
nonvanishing even without the Coulomb interaction.

V. DIAGRAMMATIC TREATMENT

To find the most relevant many-body self-energy diagrams,
we argue as follows. In a metal the plasmon peak in photoab-
sorption is captured by a two-particle Green’s function G2
evaluated from the BSE with Hartree kernel KH = −δ"H/δG.
However, in PE the plasmon peak does not emerge from
a Green’s function calculated with Hartree self-energy "H.
Rather, the plasmon peak emerges from the GW self-energy
"GW ≡ −ivG2G

−1, where v is the Coulomb interaction and
G2 is the two-particle Green’s function which solves the BSE
with kernel KH. By analogy we expect that real excitons
emerge from a self-energy " = −ivG2G

−1, where G2 solves
the BSE with kernel KHSEX = −δ"HSEX/δG, "HSEX being
the HSEX self-energy. The conclusion of this reasoning is in
agreement with earlier studies on an eh plasma [60,61]. In fact,
this G2 contains the T -matrix diagrams in the particle-hole
sector which we know to describe the physics of excitons in
photoabsorption. The twist with respect to the plasmon case
is that in PE plasmons are seen also in equilibrium, whereas
excitons are not. As we shall see, this aspect is not related
to the selection of self-energy diagrams but to the qp Green’s
function chosen to evaluate them.

On the basis of this discussion we calculate the Green’s
function appearing in Eq. (10) using the self-energy in Fig. 2(a)

FIG. 2. (a) Diagram for the self-energy. (b) Diagram for L.
Wiggly lines denote the bare interaction v and doubly wiggly lines
denote the statically screened interaction W .
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Probability to find photoelectron with momenta 𝒌

Assume a steady-state
distribution of excitons

Linearize this assuming weak probe
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Assuming Gaussian probe pulse with temporal width 𝜎:

Exciton Distribution

Exciton Wavefunction

Energy Conservation

Valence band dispersion!

ARPES Theory

Indirect gap nature shows 
up through momentum 
conservation and w in the 
expression

P (td) / |M |2
X

�,Q
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�
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With only Q=0 excitons:

ARPES shows
• Replica of the valence 

band dispersion 
• Near conduction band 
• Offset by exciton Eb

Results: Infinitely Sharp Exciton r

Phys. Rev. B 97, 235310 (2018) 



Results

Exciton Distribution
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Exciton coherences

Exciton beats in GaAs quantum wells: bosonic representation
and collective effects

J. Fernández-Rossiera,*, C. Tejedora, R. Merlinb
aDepartamento de Fı́sica Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain

bDepartment of Physics, The University of Michigan, Ann Arbor, MI 48109-1120, USA

Received 12 July 1999; accepted 10 September 1999 by A. Pinczuk

Abstract

We discuss light–heavy hole beats observed in transient optical experiments in GaAs quantum wells in terms of a free-boson
coherent state model. This approach is compared with descriptions based on few-level representations. Results lead to an
interpretation of the beats as due to classical electromagnetic interference. The boson picture correctly describes photon
excitation of extended states and accounts for experiments involving coherent control of the exciton density and Rayleigh
scattering beating. ! 1999 Elsevier Science Ltd. All rights reserved.

Keywords: A. Quantum wells; D. Optical properties; E. Time-resolved optical spectroscopies

The optical properties of semiconductor quantum wells
(QW) and, in particular, the coherent dynamics of excitons
following resonant excitation with ultrafast laser pulses
have attracted much attention in recent years [1–22]. It is
generally accepted that there is a transfer of coherence
between the optical field and the QW that disappears in a
characteristic time T2 (picoseconds for GaAs) after the laser
is turned off. However, the questions as to how the coher-
ence is actually induced and that of the nature of the coher-
ent state of the solid are poorly understood. In this paper, we
address these points by re-examining the long-standing
problem of the (classical vs. quantum) nature of the ubiqui-
tous beats associated with the light-hole (LX) and heavy-
hole (HX) excitons, which are observed in transient optical
experiments on QW [1–9]. To this end, we consider the
coherent behavior of excitons using the simplest albeit
non-trivial model where they are treated as non-interacting
bosons. Hence, our work relates directly to studies for which
nonlinear effects are not important [8,9,12,13,16–22] but it
is not aimed at explaining the four-wave-mixing (FWM)
experiments that dominate the field [1–4]. Nevertheless,
since nonlinear effects are, typically, weak compared with
harmonic contributions, the free-boson picture provides in

all cases the correct lowest-order wavefunction of the
photoexcited solid. It should be emphasized that our results
apply only to excitons in weakly-localized states.
The structure of this paper is as follows. First, we discuss

the bosonic representation of excitons in QWs, obtaining the
exact collective state of a QW driven by an arbitrary laser
pulse and show that its properties vis-a-vis coherence are
identical to those of coherent optical fields [23]. From this, it
follows that laser-induced coherence is a collective property
of the exciton field that is not owed by individual excitons.
Using the many-exciton wavefunction, we provide a quan-
titative description of recent experiments where two laser
pulses are used to coherently control the HX density in a
GaAs QW [12,13,16,17]. We also analyze the case where a
single pulse excites both the LX and HX states and argue
that the resulting beats [1–9,18–22] are not due to (single-
exciton) quantum interference, as advocated by few-level
models, but to polarization interference associated with
the emission of phased arrays of classical antennas. Finally,
we consider Rayleigh scattering experiments [8,9,18–22]
and show that the bosonic approach accounts for the quad-
ratic rise in the intensity at short times that is observed in the
experiments [9].
At small electric fields and near band-gap excitation, the

quanta of the induced polarization field, P, are the excitons
[24]. Since their number is proportional to the illuminated

Solid State Communications 112 (1999) 597–600

0038-1098/99/$ - see front matter ! 1999 Elsevier Science Ltd. All rights reserved.
PII: S0038-1098(99)00427-5

PERGAMON
www.elsevier.com/locate/ssc

*Corresponding author.
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Time-Resolved Coherent Photoelectron
Spectroscopy of Quantized Electronic

States on Metal Surfaces
U. Höfer,* I. L. Shumay, Ch. Reuß, U. Thomann, W. Wallauer,

Th. Fauster

Time-resolved two-photon photoemission in combination with the coherent excitation of
several quantum states was used to study the ultrafast electron dynamics of image-
potential states on metal surfaces. For a (100) surface of copper, the spectroscopy of
quantum beats made previously unresolved high-order states (quantum number n $ 4)
experimentally accessible. By exciting electrons close to the vacuum level, electron wave
packets could be created and detected that described the quasi-classical periodic
motion of weakly bound electrons. They traveled more than 200 Å away from the surface
and oscillated back and forth with a period of 800 femtoseconds.

Photoelectron spectroscopy has developed
into one of the most versatile and successful
tools for surface studies. Particularly attrac-
tive features of this technique are the high
surface sensitivity associated with the low
escape depth of the photoelectrons and the
capability of angle-resolved photoemission
to completely characterize electronic states
in energy and momentum space (1). Re-
cently, these features have been combined
with ultrafast laser excitation for direct
time-domain investigations of electron dy-
namics at surfaces (2). Here, we demon-
strate another facet of this powerful tech-
nique, the investigation of coherence phe-
nomena in real time. In contrast to exper-
imental methods that rely merely on
intensities, coherent spectroscopies offer
the unique capability of accessing not only
the amplitudes but also the phases of the
wave functions of interest (3). This tech-
nique dramatically increases the amount of
information that one is able to obtain about
the temporal evolution of fast processes.

In this report, we discuss the dynamics of
image-potential states, that is, the quan-
tized excited states of electrons that exist in
front of many metal surfaces (4, 5). Using
femtosecond time-resolved two-photon
photoemission (2PPE), we observed the in-
terference between the wave functions of
neighboring eigenstates and the quasi-clas-
sical motion of electron wave packets cre-
ated by the coherent superposition of sev-
eral quantum states. Recently, the imaging
of the static charge density of related sur-
face electronic (ground) states in real space
with the scanning tunneling microscope

has attracted considerable interest (6); the
present results reveal the dynamical evolu-
tion of excited electrons in real time.

Image-potential states are conceptually
rather simple. An electron at a distance z in
front of a conducting metal surface experi-
ences an attractive force F(z) 5 2e2/(2z)2

identical to that produced by a positive
(mirror image) charge at a distance z inside
the metal (Fig. 1A). If the metal has a band
gap (in z direction) near the vacuum level
Evac [ 0, then an electron below Evac may
be trapped in the potential well formed by
the Coulomb-like attractive image poten-
tial V(z) 5 2e2/4z and the repulsive surface
barrier (4). The resulting quantized elec-
tronic states form a Rydberg series with
energies En

En 5
20.85 eV
(n 1 a)2 , n 5 1,2, . . . (1)

converging toward the vacuum energy,
where the influence of the surface poten-
tial on the binding energy EB 5 2En is
approximated by a quantum defect 0 #
a # 0.5. Experimentally, image-potential
states have been studied with 2PPE on
many metal surfaces including surfaces
covered with adsorbates and metallic
overlayers (5, 7–11). One photon with
energy \va (\ is Planck’s constant h di-
vided by 2p and v is the photon frequency
times 2p) excites an electron out of an
occupied state below the Fermi energy EF
into the image-potential state n. A second
photon with energy \vb excites the elec-
tron to an energy above Evac (Fig. 1). The
electron leaves the surface, and its kinetic
energy Ek 5 \vb 1 En is measured. Be-
cause the wave functions of image-poten-
tial states are mainly located in the vacu-
um above the surface, the lifetimes associ-
ated with image states can be significantly
longer than those of electronic excitations

in the metal (11, 12). For Cu(100) and
Ag(100) surfaces, lifetimes between 30
and 40 fs have been reported for the n 5
1 state from the measurements of line-
widths (5) and early time-resolved exper-
iments (8). Theoretically, the overlap of
the wave functions ⎪n& with the bulk elec-
tronic states, and thus the lifetime tn, is
expected to scale as n3 (4). A sufficiently
long decay time of the excited state pop-
ulation is essential for the experimental
observation of the coherent phenomena
described below.

The experimental setup consisted of a
80-MHz Ti:sapphire laser system that gen-
erated infrared (IR) pulses of 70-fs dura-
tion. Frequency-tripled 95-fs ultraviolet
(UV) pulses from this laser were used for
the excitation step (\va 5 4.7 eV). The
photoelectrons were emitted by the fun-
damental IR pulses (\vb 5 1.57 eV) and
were detected in a hemispherical analyzer
with an energy resolution of 30 meV and
an angular acceptance of 60.6° about the
surface normal. The preparation of the
Cu(111) and Cu(100) samples and details
of the ultrahigh-vacuum chamber have
been described elsewhere (5). The samples
were kept at room temperature. Typical
energy-resolved 2PPE spectra of Cu(100)
obtained for zero delay between the UV
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tenoptik, D-85740 Garching, Germany.
Ch. Reuß, U. Thomann, W. Wallauer, Th. Fauster, Max-
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Fig. 1. (A) Electric field and potential energy dia-
gram of an electron in front of a Cu(100) surface (z
5 0). The potential well formed by the sp band gap
(unshaded area in the metal) and the Coulomb tail
leads to a series of discrete hydrogen-like elec-
tronic states that extend into the vacuum (z . 0).
The squares of the wave functions of the lowest
three states are shown. (B) Energy-resolved 2PPE
spectrum obtained after excitation by photons of
energy \va and \vb.

REPORTS

SCIENCE z VOL. 277 z 5 SEPTEMBER 1997 z www.sciencemag.org1480

on O
ctober 6, 2020

 
http://science.sciencem

ag.org/
Downloaded from

 

and IR pulses (Fig. 1B) show three well-
separated peaks corresponding to emission
from the image-potential states n 5 1, 2,
and 3 and a shoulder arising from n $ 4.

For the time-domain experiments, we
set the electron analyzer to a fixed elec-
tron energy and recorded the 2PPE inten-
sity as a function of the variable delay
between the UV pump and the IR probe
pulses. To measure the true cross-correla-
tion between pump and probe pulses, we
recorded the direct 2PPE signal from the
occupied surface state of a Cu(111) sample
(11) that was mounted on the same hold-
er. The finite lifetimes of the electrons
excited to the image states n 5 1, 2, and 3
of Cu(100) led to a shift and asymmetric
broadening of the correlation traces as
compared to the Cu(111) reference (Fig.
2). The deduced decay times—t1 5 40 6
6 fs, t2 5 110 6 10 fs, and t3 5 300 6 15
fs—increase significantly with n, as ex-
pected theoretically.

Under the present experimental condi-
tions, the measured 2PPE intensity from
each of the levels n 5 1, 2, and 3 simply
reflects the temporal evolution of the pop-
ulation of a single quantum state. Coherent
phenomena arising from the simultaneous
excitation of more than one state did not
occur for the widely separated low-n image-
potential states. When states with n $ 4
were excited, the bandwidth of our 95-fs
pump pulses (14-meV full width at half

maximum) became comparable to the en-
ergy separation of the states of the Rydberg
series, and the coherent excitation of more
than one eigenstate became possible, result-
ing in a different dynamical behavior of
these electrons.

The recorded 2PPE intensity corre-
sponding to a binding energy of EB . 40
meV (Fig. 3A) shows an overall decay of
the intensity on a time scale of roughly 1 ps,
modulated by strong oscillations. This ex-
periment represents a variant of the well-
known quantum-beat spectroscopy of close-
ly spaced states (3). In the simple case of
coherent excitation of two levels ⎪n& and
⎪n 1 1&, the oscillations reflect the beating
between the corresponding wave functions
Cn(t) 5 ⎪n&exp(2ivnt) and Cn11(t) 5
⎪n 1 1&exp(2ivn11t). Provided there is no
loss of coherence, the 2PPE intensity I(t)
long after the pulse is given by

I~t! } ⎪an~t!Cn~t! 1 an11~t!Cn11~t!⎪2 (2a)

} an
2 1 an11

2 1 2anan11cos~vn,n11t!
(2b)

with the (exponentially) decaying coeffi-
cients an(t) and an11(t) and a beat frequen-
cy of nn,n11 5 vn,n11/2p 5 (En11 2 En)/h
(h 5 4.136 eV fs).

For EB . 40 meV, the 95-fs pump pulse
predominantly excites electrons into the
n 5 4 and n 5 5 states. The beating period
observed for short delays is n4,5

21 5 230 fs
(Fig. 3A), corresponding to an energy dif-
ference between the states DE4,5 5 hn4,5 5
17.8 meV. After 2 ps, most of the popula-
tion in the n 5 4 state has decayed. The
oscillations now reflect the interference of
the amplitudes in the n 5 5 state and the
weakly excited n 5 6 state that persist at
these delays (n5,6

21 5 430 fs; DE5,6 5 9.6

meV). In general, the Fourier transform of
the raw data directly yields the various
beating frequencies (Fig. 3A, inset). The
two main frequency components are 4.3
and 2.3 THz, which yield energy differenc-
es of 17.8 and 9.6 meV, respectively. The
deduced values are slightly higher than
the theoretical energy differences expect-
ed from Eq. 1 with the quantum defect a 5
0.21 that reproduces the experimental
binding energy for the n 5 1 state. Similar
results have been obtained for a Ag(100)
surface. It must be emphasized that accu-
rate spectroscopy of these states in the
energy domain would require a resolution
in the millielectron volt range, which is
difficult to achieve experimentally (13).
Additionally, time-resolved coherent
spectroscopy is able to provide informa-
tion about the relaxation behavior of the
electrons in these states.

A density matrix formalism has been
used to quantitatively model excitation,
decay, and interference of the image-po-
tential states in a unified way (14). Figure
3B displays the resulting temporal evolu-
tion of the population in the states n 5 4,
5, and 6. The deduced lifetimes are ex-
tremely long for an electronic excitation
on a bare metal surface. For example, t4 5
630 fs corresponds to a Lorentzian line-
width G . 1 meV. This value of t4 is only
slightly smaller than the value of 690 fs
obtained by extrapolating from t3 5 300 fs
using the n3 power law, confirming previ-
ous theoretical predictions (4). The long
lifetimes of high-order image-potential
states are associated with weak overlap
with bulk electronic states. The resulting
low-excitation cross sections have pre-
vented previous time-resolved measure-
ments of states beyond n 5 2 (8).

Fig. 2. The 2PPE cross-correlation traces ob-
tained for the n 5 1, 2, and 3 image-potential
states of Cu(100). For positive delays, the UV ex-
citation pulse preceded the IR probe pulse. Dots
indicate measured data points. The solid lines are
the results of density matrix calculations taking
into account one intermediate state with a finite
lifetime t, as indicated. The dashed line marks the
cross-correlation from the Cu(111) reference in
the absence of a resonant intermediate state.

Fig. 3. Quantum beats observed af-
ter the coherent excitation of image-
potential states with quantum num-
bers n 5 4, 5, and 6 (EB . 40 meV ).
(A) The thick curve corresponds to
the measured 2PPE signal as func-
tion of pump-probe delay. The thin
line is the result of the density matrix
calculation for the two-photon exci-
tation depicted schematically on the
right side of the figure. The dashed
line shows the envelope %a(t ) of the
exciting UV pulse. The Fourier trans-
form was obtained after subtraction
of a smooth exponential decay from
the measured data and directly
gives the beating frequencies n4,5 5
(E5 2 E4)/h and n5,6 5 (E6 2 E5)/h
between the excited states. (B) Rel-
ative population of the individual lev-
els resulting from the calculation and
corresponding decay times tn. The coherent peaks visible for n 5 4 and n 5 6 are caused by off-resonant
excitation of these levels from the continuum of initial states in the metal.
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Q: Can we observe coherences inside the material?

j0i and j1i, i.e., in a single-quantum coherence. The second
pulse converts the single-quantum coherence to a double-
quantum coherence between j0i and j2i. The third pulse
converts the double-quantum coherence back to a single-
quantum coherence that radiates. The final single-quantum
coherence can be between states j0i and j1i or between
states j1i and j2i; both possibilities are shown in Fig. 1(d).
These pathways can be described using the double-sided
Feynman diagrams for the atomic density matrix shown in
Fig. 1(e).

Experimental two-dimensional single- and double-
quantum spectra are acquired using the apparatus
described in Ref. [17]. A mode-locked Ti:sapphire laser
generates !200 fs pulses that are input to an ultrastable
platform of nested and phase stabilized interferometers to
generate 4 identical pulses arranged in a box geometry.
Three of the beams are the excitation beams, kA, kB, and
kC, while the fourth is designated the tracer and propagates
in the same direction as the signal beam, kS. The tracer is
used to generate a reference pulse that is routed around the
sample and interfered with the emitted signal beam to

produce interferograms. The full phase and amplitude
information about the signal can be extracted from the
interferograms. The tracer is blocked during data acquis-
ition. It is used to determine the overall phase of the signal
for decomposition into real and imaginary parts [18].
The potassium vapor is held in a 350 !m thick trans-

mission cell. The cell body is made of titanium with two
sapphire windows [19]. For the measurement reported
here, the cell temperature was 130 "C. The transmitted
spectrum of the attenuated laser was used to estimate the
absorbance. The transmitted intensity is It ¼ Iie

$"l, where
Ii is the incident intensity, " is the absorption coefficient,
and l is the cell thickness. At this temperature and density,
the resonance broadened linewidths are smaller than the
Doppler width and spectrometer resolution; thus, a
1550 torr Argon buffer gas was introduced into the cell
to induce collision broadening. Since the oscillator
strength is fixed, increasing the broadening reduces the
absorbance, "l, at the peak of the D2 line, 391.02 THz,
to 0.053, which is stronger than the D1 line. This low
absorbance rules out optical density effects as explaining
the observations. We have repeated our measurements for
several different buffer gas pressures and find no qualita-
tive differences.
Figures 2(a) and 2(b) show the real part of both single-

and double-quantum spectra for a potassium number den-
sity of 3:5% 1012 cm$3. As observed previously [20], the
single-quantum spectrum shows peaks corresponding to
the D1 and D2 lines, as well as off-diagonal peaks due to
coupling between them via the ground-state bleach and
Raman-like coherences within a single atom [20].
Surprisingly, the double-quantum spectrum also shows
clear resonances, even though there are no atomic states
at these energies. The resonances have a dispersive profile,
i.e., similar to the first derivative of a peak. The observed
linewidths of 160 GHz correspond to a dephasing time of
6.25 ps for the double-quantum coherences. TheD1 andD2

lines correspond to transitions from the 4 2S1=2 ground state

to the 4 2P1=2 and 4
2P3=2 states, with transition frequencies

of 389.29 and 391.02 THz, respectively. The higher-lying
states that are closest to twice the D1;2 energies are the 5P
and 4D states, which are at frequencies 740.81 and
821.36 THz, both of which are well outside the spectral
range shown in Fig. 2(a) and well outside the laser band-
width of 3 THz. The fact that the observed resonances are
at exactly twice the frequencies of the D1 and D2 lines (or
their sum frequency) indicates that the double-quantum
resonances are due to the combined response of two atoms,
rather than the level structure of a single atom, and that the
coupling is weak (otherwise, the resonance would be
shifted). Transfer of energy between atoms during a colli-
sion is an incoherent process and thus should not result in a
double-quantum coherence.
The observations can be explained using a simple

picture obtained by combining the Hamiltonians of two

FIG. 1 (color online). (a) Levels of an isolated potassium atom.
(b) Geometry of the incident beams and signal beam. (c) Pulses
and oscillating coherences during different time periods.
(d) Transitions of a ladder-level system as a function of time
showing transitions driven by laser pulses and resulting coher-
ences. (e) Double-sided Feynman diagrams for the two-quantum
pathways that contribute to SIII for a ladder-level scheme.
(f) Hilbert space transformation between two independent two-
level atoms and a four-level system, including a doubly excited
state.
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kR = kA + kB – kC. Many classes of one-
quantum measurements have been conducted
with this geometry. For example, time-coincident
fields EA and EC produce an excited-state popu-
lation in a transient grating pattern (with wave-
vector kA – kC), which yields a coherently
scattered signal field ES if probed by field EB

(incident at the phase-matching angle for diffrac-
tion) within the excited-state lifetime. Alterna-
tively, field EC can arrive first to generate an
electronic coherence. A transient population
grating forms upon the arrival of field EA, and
field EB generates a new coherence whose phase
evolution is in reverse of the first, resulting in
rephasing of different frequency components
(that may originate from within a single inhomo-
geneously broadened transition or from distinct
transitions) to generate a photon echo signal, ES,
that is free of inhomogeneous dephasing. If two
distinct transitions interact, then the signal field
components at each frequency will be modulated
at the other frequency. Interferometric measure-
ment and subsequent Fourier transformation of
the signal field yield a one-quantum 2D spectrum
that shows diagonal peaks due to each individual
rephased coherence and off-diagonal cross-peaks
that reveal the interacting coherences. One-
quantum 2D FT OPT measurements have re-
vealed key insights into coupled chromophores
in photosynthetic antenna systems (21) and semi-
conductor QWs (22). Unlike one-quantum 2D
FT OPT measurements using collinear phase-
controlled pulses (23), in which only the absorp-
tive part of the signal is detected, it is through
isolation and detection of the full signal field that
the full optical analog to 2D FT NMR is realized
(24).

In terms of the photon echo and transient
grating measurements described above, our mea-
surements in which EA and EB arrive first at the
sample should not yield any signal at all. Unlike
the previous cases, a population grating (with
difference wavevector kA – kB) formed by the
first two fields does not give rise to coherent
scattering of the third field, EC, in the signal
direction. However, generation of a two-quantum
coherence at the sum wavevector kA + kB fol-
lowed by a transition induced by field EC to a

one-quantum coherence at wavevector kA + kB –
kC does yield coherent emission in the signal
direction. This could only result from a nonlinear
response due to interactions between excitons
generated by the first two fields, as described
above. Thus, the BOXCARS geometry with
proper time-ordering of the fields isolates two-
quantum signals and eliminates the stronger one-
quantum signals.

Two-quantum signals were first observed in
measurements with just two incident beams, with
fields EA and EB combined. In addition to the
expected photon echo signal that was observed
when EC arrived at the sample first, a signal
appeared at “negative” delay times; that is, when
the combined EA and EB fields were incident at
the sample first (25). The many-body origin of
this signal was quickly recognized. However, in
this 1D measurement of signal intensity versus
EC delay time, the various two-quantum con-
tributions weremixed. In addition, the inability to
independently control the polarizations of fields
EA and EB imposed severe limitations on two-
quantum signal selectivity, as we will see below.
The present observations are distinct from those
associated with one-quantum exciton-biexciton
coherences observed in earlier one-quantum 2D
FT OPT measurements as partially resolved
shoulders on the excitonic peaks (22, 26). Our
measurements not only track the two-quantum
signal phase evolutions at optical frequencies but
also correlate them to optical one-quantum
coherences, unlike previous frequency-domain
FWM experiments on single quantum dots (27)
and time-integrated FWM experiments on QWs
(28, 29). Our experiments separate the two-
quantum coherences that arise from multi-
exciton interactions, allowing the phenomena to
be studied even when their signatures cannot be
separated spectrally.

The main experimental challenge presented
by wavevector definition in the optical regime
lies in the difficulty of producing multiple beams
of light with pulses whose optical phases are
specified and maintained even when the pulses
are variably delayed in time-resolved measure-
ments. None of the one-quantum measurements
described above required all four optical fields to
be phase-coherent, because after the first two
field interactions, the system had electronic
excited-state population but no optical-frequency
coherent superposition between the ground and
excited states. The first two fields needed to be
phase-related, and the third field and the refer-
ence field needed to be as well, but no well-
defined phase relationship was needed between
the two pulse pairs. Even this partial phase sta-
bility among the four fields presents challenges,
and only a handful of research groups worldwide
have conducted optical 2D FT OPT measure-
ments of this sort with reflective or diffractive
beam-splitting optics in order to produce the pulse
pairs, and with two interferometers tomeasure the
required phase relationships, which change each
time one of the pulse delays is varied. In contrast,

Fig. 3. (A) GaAs QW exciton emission spectrum
(black dotted trace) with peaks at 372.2 and 373.8
THz from HX and LX, respectively. The reference
field ER was blocked. The laser pulse spectrum
(blue solid trace) is shown with the selected carrier
frequency w0 indicated by the red arrow. arb.,
arbitrary units. (B) 2D FT OPT spectral magnitude
for cross-circularly polarized excitation pulses. The
excitation density was 7 × 1010 carriers/cm2 per
well and the pulse energy was 12 pJ per excitation
field. The HX2 biexciton coherence (a) is observed
directly. The exciton-biexciton coherence that ra-
diated during the emission time is observed as a
shoulder (b) on the HX emission. (C) 2D spectrum
for co-circular excitation with the same excitation
density as in (B). The MX2 mixed biexciton coher-
ence peak (c) is observed directly and exhibits a
red-shifted emission line shape (d) due to an
exciton-biexciton coherence. The feature e at ex-
actly twice the HX frequency inw2 and the feature f
at exactly twice the LX frequency are induced
through exciton-exciton interactions described in
the SOM text and fig. S3. The contour lines are
plotted at 2% intervals. The unlabeled spectral
features in (B) and (C) at frequencies higher than
those from the discussed two-quantum signals orig-
inate from free electron-hole continuum states, not
from exciton states.

Fig. 4. Dependence of the HX2 and MX2 biexciton
dephasing times on excitation density in the 109 to
1011 carriers/cm2 per well range. The dephasing
times of the biexciton coherences decrease as the
coherently generated excitation density increases,
revealing excitation-induced dephasing of biexci-
tons similar to that of excitons but due to higher-
order (exciton-biexciton) interactions. Error bars
represent 95% confidence intervals.
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where ℏΩ ¼ 3ℏω is the total photon energy of the absorp-
tion processes, and we define the relative phase parameter
Δϕ ¼ 2ϕ3ω=2 − 3ϕω [32]. If the ω and 3ω=2 fields corre-
spond to pulse trains from the same optical frequency comb,
or with the same repetition rate, the QuIC current is
modulated by the offset frequency f0 through the phase
parameter Δϕ ¼ 2πf0t. Thereby, we could characterize the
offset frequency of a frequency comb based on the QuIC
current [34]. The lattice symmetries impose constraints on
the components of the tensor η2þ3ðΩÞ. Formost frequencies,
the largest independent component [32] for AlGaAs is
ηxxxxxx2þ3 ðΩÞ, which corresponds to the polarization of both
fields and the current being along the [100] crystal axis.
Unless specified otherwise, these are the polarizations used

in all of our discussion. We measure the injection current
with electrodes aligned along the [100] crystal axis. We
illustrate our experimental setup in Fig. 2, andwe present the
observed dependence of the detected signal on the intensities
and phases of the fields in Figs. 3 and 4, respectively.
The experimental setup is shown in Fig. 2. A custom

laser system (MenloSystems) outputs two femtosecond
pulse trains derived from a common oscillator at different
wavelengths: one is 400 mW and centered at 1560 nm and
the other is 740 mW and centered at 1040 nm. Both beams
have a pulse duration of about 70 fs and repetition rate of
250.583 MHz. The 1560 and 1040 nm beams are also
respectively referred to as ω and 3ω=2 fields in this paper.
We measure the offset frequency of the laser comb
using the heterodyne beat note produced in a 2f-3f self-
referencing interferometer, for which we double the fre-
quency of 1040 nm beam with a beta barium borate crystal,
and triple the 1560 nm beam with a periodically poled
lithium niobate (PPLN) crystal; although the PPLN is
designed for second harmonic generation, it also produces
a weak third harmonic. The beat note measured by the
detector is then used as a source in a feed-forward setup to
stabilize the offset frequency. In the feed-forward setup
[35], an acousto-optic modulator (AOM) is inserted in the
beam path driven by the amplified beat note, so the
diffracted beam of order −1 is the resulting offset-
frequency-stabilized beam. The feed-forward setup also
allows us to control the offset frequency. Details are given
in Supplemental Material [36]. In the experiment, in
order to avoid the spurious signal induced by a harmonic
of the AOM driving rf, the offset frequencies of the

FIG. 1. Illustration of the quantum interference between the
2PA and 3PA pathways for the excitation of an electron from a
valence to a conduction band. If the two pulses are phase coherent
related, the QuIC current is generated due to the quantum
interference between them.

FIG. 3. Phase dependence of the 2þ 3 QuIC current. The
fringes are associated with the phase ramping of the 1560 nm
beam. The black curve is the ramping voltage applied on the
piezo to change the phase of the 1560 nm beam. When increasing
the amplitude of the ramping voltage by a factor of 1.4, from 380
(red) to 540 mV (blue), the number of fringes is increased about
1.5 times, approximately the same ratio. The estimated displace-
ment of piezo is about 1.54% 0.05 nm=mV.

FIG. 2. The experimental setup is shown schematically. The
comb offset frequency is measured using a 2f-3f interferometer
and the beat note signal is then amplified to drive theAOM inserted
in the beam path. The diffracted beam of order −1 is the offset-
frequency stabilized beam used in the QuIC measurement. The
two diffracted beams are then incident on a metal-semiconductor-
metal device. The signal is detected through a lock-in amplifier
referenced by the offset frequency set by the feed-forward setup.
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where ℏΩ ¼ 3ℏω is the total photon energy of the absorp-
tion processes, and we define the relative phase parameter
Δϕ ¼ 2ϕ3ω=2 − 3ϕω [32]. If the ω and 3ω=2 fields corre-
spond to pulse trains from the same optical frequency comb,
or with the same repetition rate, the QuIC current is
modulated by the offset frequency f0 through the phase
parameter Δϕ ¼ 2πf0t. Thereby, we could characterize the
offset frequency of a frequency comb based on the QuIC
current [34]. The lattice symmetries impose constraints on
the components of the tensor η2þ3ðΩÞ. Formost frequencies,
the largest independent component [32] for AlGaAs is
ηxxxxxx2þ3 ðΩÞ, which corresponds to the polarization of both
fields and the current being along the [100] crystal axis.
Unless specified otherwise, these are the polarizations used

in all of our discussion. We measure the injection current
with electrodes aligned along the [100] crystal axis. We
illustrate our experimental setup in Fig. 2, andwe present the
observed dependence of the detected signal on the intensities
and phases of the fields in Figs. 3 and 4, respectively.
The experimental setup is shown in Fig. 2. A custom

laser system (MenloSystems) outputs two femtosecond
pulse trains derived from a common oscillator at different
wavelengths: one is 400 mW and centered at 1560 nm and
the other is 740 mW and centered at 1040 nm. Both beams
have a pulse duration of about 70 fs and repetition rate of
250.583 MHz. The 1560 and 1040 nm beams are also
respectively referred to as ω and 3ω=2 fields in this paper.
We measure the offset frequency of the laser comb
using the heterodyne beat note produced in a 2f-3f self-
referencing interferometer, for which we double the fre-
quency of 1040 nm beam with a beta barium borate crystal,
and triple the 1560 nm beam with a periodically poled
lithium niobate (PPLN) crystal; although the PPLN is
designed for second harmonic generation, it also produces
a weak third harmonic. The beat note measured by the
detector is then used as a source in a feed-forward setup to
stabilize the offset frequency. In the feed-forward setup
[35], an acousto-optic modulator (AOM) is inserted in the
beam path driven by the amplified beat note, so the
diffracted beam of order −1 is the resulting offset-
frequency-stabilized beam. The feed-forward setup also
allows us to control the offset frequency. Details are given
in Supplemental Material [36]. In the experiment, in
order to avoid the spurious signal induced by a harmonic
of the AOM driving rf, the offset frequencies of the

FIG. 1. Illustration of the quantum interference between the
2PA and 3PA pathways for the excitation of an electron from a
valence to a conduction band. If the two pulses are phase coherent
related, the QuIC current is generated due to the quantum
interference between them.

FIG. 3. Phase dependence of the 2þ 3 QuIC current. The
fringes are associated with the phase ramping of the 1560 nm
beam. The black curve is the ramping voltage applied on the
piezo to change the phase of the 1560 nm beam. When increasing
the amplitude of the ramping voltage by a factor of 1.4, from 380
(red) to 540 mV (blue), the number of fringes is increased about
1.5 times, approximately the same ratio. The estimated displace-
ment of piezo is about 1.54% 0.05 nm=mV.

FIG. 2. The experimental setup is shown schematically. The
comb offset frequency is measured using a 2f-3f interferometer
and the beat note signal is then amplified to drive theAOM inserted
in the beam path. The diffracted beam of order −1 is the offset-
frequency stabilized beam used in the QuIC measurement. The
two diffracted beams are then incident on a metal-semiconductor-
metal device. The signal is detected through a lock-in amplifier
referenced by the offset frequency set by the feed-forward setup.
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and IR pulses (Fig. 1B) show three well-
separated peaks corresponding to emission
from the image-potential states n 5 1, 2,
and 3 and a shoulder arising from n $ 4.

For the time-domain experiments, we
set the electron analyzer to a fixed elec-
tron energy and recorded the 2PPE inten-
sity as a function of the variable delay
between the UV pump and the IR probe
pulses. To measure the true cross-correla-
tion between pump and probe pulses, we
recorded the direct 2PPE signal from the
occupied surface state of a Cu(111) sample
(11) that was mounted on the same hold-
er. The finite lifetimes of the electrons
excited to the image states n 5 1, 2, and 3
of Cu(100) led to a shift and asymmetric
broadening of the correlation traces as
compared to the Cu(111) reference (Fig.
2). The deduced decay times—t1 5 40 6
6 fs, t2 5 110 6 10 fs, and t3 5 300 6 15
fs—increase significantly with n, as ex-
pected theoretically.

Under the present experimental condi-
tions, the measured 2PPE intensity from
each of the levels n 5 1, 2, and 3 simply
reflects the temporal evolution of the pop-
ulation of a single quantum state. Coherent
phenomena arising from the simultaneous
excitation of more than one state did not
occur for the widely separated low-n image-
potential states. When states with n $ 4
were excited, the bandwidth of our 95-fs
pump pulses (14-meV full width at half

maximum) became comparable to the en-
ergy separation of the states of the Rydberg
series, and the coherent excitation of more
than one eigenstate became possible, result-
ing in a different dynamical behavior of
these electrons.

The recorded 2PPE intensity corre-
sponding to a binding energy of EB . 40
meV (Fig. 3A) shows an overall decay of
the intensity on a time scale of roughly 1 ps,
modulated by strong oscillations. This ex-
periment represents a variant of the well-
known quantum-beat spectroscopy of close-
ly spaced states (3). In the simple case of
coherent excitation of two levels ⎪n& and
⎪n 1 1&, the oscillations reflect the beating
between the corresponding wave functions
Cn(t) 5 ⎪n&exp(2ivnt) and Cn11(t) 5
⎪n 1 1&exp(2ivn11t). Provided there is no
loss of coherence, the 2PPE intensity I(t)
long after the pulse is given by

I~t! } ⎪an~t!Cn~t! 1 an11~t!Cn11~t!⎪2 (2a)

} an
2 1 an11

2 1 2anan11cos~vn,n11t!
(2b)

with the (exponentially) decaying coeffi-
cients an(t) and an11(t) and a beat frequen-
cy of nn,n11 5 vn,n11/2p 5 (En11 2 En)/h
(h 5 4.136 eV fs).

For EB . 40 meV, the 95-fs pump pulse
predominantly excites electrons into the
n 5 4 and n 5 5 states. The beating period
observed for short delays is n4,5

21 5 230 fs
(Fig. 3A), corresponding to an energy dif-
ference between the states DE4,5 5 hn4,5 5
17.8 meV. After 2 ps, most of the popula-
tion in the n 5 4 state has decayed. The
oscillations now reflect the interference of
the amplitudes in the n 5 5 state and the
weakly excited n 5 6 state that persist at
these delays (n5,6

21 5 430 fs; DE5,6 5 9.6

meV). In general, the Fourier transform of
the raw data directly yields the various
beating frequencies (Fig. 3A, inset). The
two main frequency components are 4.3
and 2.3 THz, which yield energy differenc-
es of 17.8 and 9.6 meV, respectively. The
deduced values are slightly higher than
the theoretical energy differences expect-
ed from Eq. 1 with the quantum defect a 5
0.21 that reproduces the experimental
binding energy for the n 5 1 state. Similar
results have been obtained for a Ag(100)
surface. It must be emphasized that accu-
rate spectroscopy of these states in the
energy domain would require a resolution
in the millielectron volt range, which is
difficult to achieve experimentally (13).
Additionally, time-resolved coherent
spectroscopy is able to provide informa-
tion about the relaxation behavior of the
electrons in these states.

A density matrix formalism has been
used to quantitatively model excitation,
decay, and interference of the image-po-
tential states in a unified way (14). Figure
3B displays the resulting temporal evolu-
tion of the population in the states n 5 4,
5, and 6. The deduced lifetimes are ex-
tremely long for an electronic excitation
on a bare metal surface. For example, t4 5
630 fs corresponds to a Lorentzian line-
width G . 1 meV. This value of t4 is only
slightly smaller than the value of 690 fs
obtained by extrapolating from t3 5 300 fs
using the n3 power law, confirming previ-
ous theoretical predictions (4). The long
lifetimes of high-order image-potential
states are associated with weak overlap
with bulk electronic states. The resulting
low-excitation cross sections have pre-
vented previous time-resolved measure-
ments of states beyond n 5 2 (8).

Fig. 2. The 2PPE cross-correlation traces ob-
tained for the n 5 1, 2, and 3 image-potential
states of Cu(100). For positive delays, the UV ex-
citation pulse preceded the IR probe pulse. Dots
indicate measured data points. The solid lines are
the results of density matrix calculations taking
into account one intermediate state with a finite
lifetime t, as indicated. The dashed line marks the
cross-correlation from the Cu(111) reference in
the absence of a resonant intermediate state.

Fig. 3. Quantum beats observed af-
ter the coherent excitation of image-
potential states with quantum num-
bers n 5 4, 5, and 6 (EB . 40 meV ).
(A) The thick curve corresponds to
the measured 2PPE signal as func-
tion of pump-probe delay. The thin
line is the result of the density matrix
calculation for the two-photon exci-
tation depicted schematically on the
right side of the figure. The dashed
line shows the envelope %a(t ) of the
exciting UV pulse. The Fourier trans-
form was obtained after subtraction
of a smooth exponential decay from
the measured data and directly
gives the beating frequencies n4,5 5
(E5 2 E4)/h and n5,6 5 (E6 2 E5)/h
between the excited states. (B) Rel-
ative population of the individual lev-
els resulting from the calculation and
corresponding decay times tn. The coherent peaks visible for n 5 4 and n 5 6 are caused by off-resonant
excitation of these levels from the continuum of initial states in the metal.
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Wavefunctions (Höfer)

and IR pulses (Fig. 1B) show three well-
separated peaks corresponding to emission
from the image-potential states n 5 1, 2,
and 3 and a shoulder arising from n $ 4.

For the time-domain experiments, we
set the electron analyzer to a fixed elec-
tron energy and recorded the 2PPE inten-
sity as a function of the variable delay
between the UV pump and the IR probe
pulses. To measure the true cross-correla-
tion between pump and probe pulses, we
recorded the direct 2PPE signal from the
occupied surface state of a Cu(111) sample
(11) that was mounted on the same hold-
er. The finite lifetimes of the electrons
excited to the image states n 5 1, 2, and 3
of Cu(100) led to a shift and asymmetric
broadening of the correlation traces as
compared to the Cu(111) reference (Fig.
2). The deduced decay times—t1 5 40 6
6 fs, t2 5 110 6 10 fs, and t3 5 300 6 15
fs—increase significantly with n, as ex-
pected theoretically.

Under the present experimental condi-
tions, the measured 2PPE intensity from
each of the levels n 5 1, 2, and 3 simply
reflects the temporal evolution of the pop-
ulation of a single quantum state. Coherent
phenomena arising from the simultaneous
excitation of more than one state did not
occur for the widely separated low-n image-
potential states. When states with n $ 4
were excited, the bandwidth of our 95-fs
pump pulses (14-meV full width at half

maximum) became comparable to the en-
ergy separation of the states of the Rydberg
series, and the coherent excitation of more
than one eigenstate became possible, result-
ing in a different dynamical behavior of
these electrons.

The recorded 2PPE intensity corre-
sponding to a binding energy of EB . 40
meV (Fig. 3A) shows an overall decay of
the intensity on a time scale of roughly 1 ps,
modulated by strong oscillations. This ex-
periment represents a variant of the well-
known quantum-beat spectroscopy of close-
ly spaced states (3). In the simple case of
coherent excitation of two levels ⎪n& and
⎪n 1 1&, the oscillations reflect the beating
between the corresponding wave functions
Cn(t) 5 ⎪n&exp(2ivnt) and Cn11(t) 5
⎪n 1 1&exp(2ivn11t). Provided there is no
loss of coherence, the 2PPE intensity I(t)
long after the pulse is given by

I~t! } ⎪an~t!Cn~t! 1 an11~t!Cn11~t!⎪2 (2a)

} an
2 1 an11

2 1 2anan11cos~vn,n11t!
(2b)

with the (exponentially) decaying coeffi-
cients an(t) and an11(t) and a beat frequen-
cy of nn,n11 5 vn,n11/2p 5 (En11 2 En)/h
(h 5 4.136 eV fs).

For EB . 40 meV, the 95-fs pump pulse
predominantly excites electrons into the
n 5 4 and n 5 5 states. The beating period
observed for short delays is n4,5

21 5 230 fs
(Fig. 3A), corresponding to an energy dif-
ference between the states DE4,5 5 hn4,5 5
17.8 meV. After 2 ps, most of the popula-
tion in the n 5 4 state has decayed. The
oscillations now reflect the interference of
the amplitudes in the n 5 5 state and the
weakly excited n 5 6 state that persist at
these delays (n5,6

21 5 430 fs; DE5,6 5 9.6

meV). In general, the Fourier transform of
the raw data directly yields the various
beating frequencies (Fig. 3A, inset). The
two main frequency components are 4.3
and 2.3 THz, which yield energy differenc-
es of 17.8 and 9.6 meV, respectively. The
deduced values are slightly higher than
the theoretical energy differences expect-
ed from Eq. 1 with the quantum defect a 5
0.21 that reproduces the experimental
binding energy for the n 5 1 state. Similar
results have been obtained for a Ag(100)
surface. It must be emphasized that accu-
rate spectroscopy of these states in the
energy domain would require a resolution
in the millielectron volt range, which is
difficult to achieve experimentally (13).
Additionally, time-resolved coherent
spectroscopy is able to provide informa-
tion about the relaxation behavior of the
electrons in these states.

A density matrix formalism has been
used to quantitatively model excitation,
decay, and interference of the image-po-
tential states in a unified way (14). Figure
3B displays the resulting temporal evolu-
tion of the population in the states n 5 4,
5, and 6. The deduced lifetimes are ex-
tremely long for an electronic excitation
on a bare metal surface. For example, t4 5
630 fs corresponds to a Lorentzian line-
width G . 1 meV. This value of t4 is only
slightly smaller than the value of 690 fs
obtained by extrapolating from t3 5 300 fs
using the n3 power law, confirming previ-
ous theoretical predictions (4). The long
lifetimes of high-order image-potential
states are associated with weak overlap
with bulk electronic states. The resulting
low-excitation cross sections have pre-
vented previous time-resolved measure-
ments of states beyond n 5 2 (8).

Fig. 2. The 2PPE cross-correlation traces ob-
tained for the n 5 1, 2, and 3 image-potential
states of Cu(100). For positive delays, the UV ex-
citation pulse preceded the IR probe pulse. Dots
indicate measured data points. The solid lines are
the results of density matrix calculations taking
into account one intermediate state with a finite
lifetime t, as indicated. The dashed line marks the
cross-correlation from the Cu(111) reference in
the absence of a resonant intermediate state.

Fig. 3. Quantum beats observed af-
ter the coherent excitation of image-
potential states with quantum num-
bers n 5 4, 5, and 6 (EB . 40 meV ).
(A) The thick curve corresponds to
the measured 2PPE signal as func-
tion of pump-probe delay. The thin
line is the result of the density matrix
calculation for the two-photon exci-
tation depicted schematically on the
right side of the figure. The dashed
line shows the envelope %a(t ) of the
exciting UV pulse. The Fourier trans-
form was obtained after subtraction
of a smooth exponential decay from
the measured data and directly
gives the beating frequencies n4,5 5
(E5 2 E4)/h and n5,6 5 (E6 2 E5)/h
between the excited states. (B) Rel-
ative population of the individual lev-
els resulting from the calculation and
corresponding decay times tn. The coherent peaks visible for n 5 4 and n 5 6 are caused by off-resonant
excitation of these levels from the continuum of initial states in the metal.
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and IR pulses (Fig. 1B) show three well-
separated peaks corresponding to emission
from the image-potential states n 5 1, 2,
and 3 and a shoulder arising from n $ 4.

For the time-domain experiments, we
set the electron analyzer to a fixed elec-
tron energy and recorded the 2PPE inten-
sity as a function of the variable delay
between the UV pump and the IR probe
pulses. To measure the true cross-correla-
tion between pump and probe pulses, we
recorded the direct 2PPE signal from the
occupied surface state of a Cu(111) sample
(11) that was mounted on the same hold-
er. The finite lifetimes of the electrons
excited to the image states n 5 1, 2, and 3
of Cu(100) led to a shift and asymmetric
broadening of the correlation traces as
compared to the Cu(111) reference (Fig.
2). The deduced decay times—t1 5 40 6
6 fs, t2 5 110 6 10 fs, and t3 5 300 6 15
fs—increase significantly with n, as ex-
pected theoretically.

Under the present experimental condi-
tions, the measured 2PPE intensity from
each of the levels n 5 1, 2, and 3 simply
reflects the temporal evolution of the pop-
ulation of a single quantum state. Coherent
phenomena arising from the simultaneous
excitation of more than one state did not
occur for the widely separated low-n image-
potential states. When states with n $ 4
were excited, the bandwidth of our 95-fs
pump pulses (14-meV full width at half

maximum) became comparable to the en-
ergy separation of the states of the Rydberg
series, and the coherent excitation of more
than one eigenstate became possible, result-
ing in a different dynamical behavior of
these electrons.

The recorded 2PPE intensity corre-
sponding to a binding energy of EB . 40
meV (Fig. 3A) shows an overall decay of
the intensity on a time scale of roughly 1 ps,
modulated by strong oscillations. This ex-
periment represents a variant of the well-
known quantum-beat spectroscopy of close-
ly spaced states (3). In the simple case of
coherent excitation of two levels ⎪n& and
⎪n 1 1&, the oscillations reflect the beating
between the corresponding wave functions
Cn(t) 5 ⎪n&exp(2ivnt) and Cn11(t) 5
⎪n 1 1&exp(2ivn11t). Provided there is no
loss of coherence, the 2PPE intensity I(t)
long after the pulse is given by

I~t! } ⎪an~t!Cn~t! 1 an11~t!Cn11~t!⎪2 (2a)

} an
2 1 an11

2 1 2anan11cos~vn,n11t!
(2b)

with the (exponentially) decaying coeffi-
cients an(t) and an11(t) and a beat frequen-
cy of nn,n11 5 vn,n11/2p 5 (En11 2 En)/h
(h 5 4.136 eV fs).

For EB . 40 meV, the 95-fs pump pulse
predominantly excites electrons into the
n 5 4 and n 5 5 states. The beating period
observed for short delays is n4,5

21 5 230 fs
(Fig. 3A), corresponding to an energy dif-
ference between the states DE4,5 5 hn4,5 5
17.8 meV. After 2 ps, most of the popula-
tion in the n 5 4 state has decayed. The
oscillations now reflect the interference of
the amplitudes in the n 5 5 state and the
weakly excited n 5 6 state that persist at
these delays (n5,6

21 5 430 fs; DE5,6 5 9.6

meV). In general, the Fourier transform of
the raw data directly yields the various
beating frequencies (Fig. 3A, inset). The
two main frequency components are 4.3
and 2.3 THz, which yield energy differenc-
es of 17.8 and 9.6 meV, respectively. The
deduced values are slightly higher than
the theoretical energy differences expect-
ed from Eq. 1 with the quantum defect a 5
0.21 that reproduces the experimental
binding energy for the n 5 1 state. Similar
results have been obtained for a Ag(100)
surface. It must be emphasized that accu-
rate spectroscopy of these states in the
energy domain would require a resolution
in the millielectron volt range, which is
difficult to achieve experimentally (13).
Additionally, time-resolved coherent
spectroscopy is able to provide informa-
tion about the relaxation behavior of the
electrons in these states.

A density matrix formalism has been
used to quantitatively model excitation,
decay, and interference of the image-po-
tential states in a unified way (14). Figure
3B displays the resulting temporal evolu-
tion of the population in the states n 5 4,
5, and 6. The deduced lifetimes are ex-
tremely long for an electronic excitation
on a bare metal surface. For example, t4 5
630 fs corresponds to a Lorentzian line-
width G . 1 meV. This value of t4 is only
slightly smaller than the value of 690 fs
obtained by extrapolating from t3 5 300 fs
using the n3 power law, confirming previ-
ous theoretical predictions (4). The long
lifetimes of high-order image-potential
states are associated with weak overlap
with bulk electronic states. The resulting
low-excitation cross sections have pre-
vented previous time-resolved measure-
ments of states beyond n 5 2 (8).

Fig. 2. The 2PPE cross-correlation traces ob-
tained for the n 5 1, 2, and 3 image-potential
states of Cu(100). For positive delays, the UV ex-
citation pulse preceded the IR probe pulse. Dots
indicate measured data points. The solid lines are
the results of density matrix calculations taking
into account one intermediate state with a finite
lifetime t, as indicated. The dashed line marks the
cross-correlation from the Cu(111) reference in
the absence of a resonant intermediate state.

Fig. 3. Quantum beats observed af-
ter the coherent excitation of image-
potential states with quantum num-
bers n 5 4, 5, and 6 (EB . 40 meV ).
(A) The thick curve corresponds to
the measured 2PPE signal as func-
tion of pump-probe delay. The thin
line is the result of the density matrix
calculation for the two-photon exci-
tation depicted schematically on the
right side of the figure. The dashed
line shows the envelope %a(t ) of the
exciting UV pulse. The Fourier trans-
form was obtained after subtraction
of a smooth exponential decay from
the measured data and directly
gives the beating frequencies n4,5 5
(E5 2 E4)/h and n5,6 5 (E6 2 E5)/h
between the excited states. (B) Rel-
ative population of the individual lev-
els resulting from the calculation and
corresponding decay times tn. The coherent peaks visible for n 5 4 and n 5 6 are caused by off-resonant
excitation of these levels from the continuum of initial states in the metal.
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Wavefunctions (Höfer)

and IR pulses (Fig. 1B) show three well-
separated peaks corresponding to emission
from the image-potential states n 5 1, 2,
and 3 and a shoulder arising from n $ 4.

For the time-domain experiments, we
set the electron analyzer to a fixed elec-
tron energy and recorded the 2PPE inten-
sity as a function of the variable delay
between the UV pump and the IR probe
pulses. To measure the true cross-correla-
tion between pump and probe pulses, we
recorded the direct 2PPE signal from the
occupied surface state of a Cu(111) sample
(11) that was mounted on the same hold-
er. The finite lifetimes of the electrons
excited to the image states n 5 1, 2, and 3
of Cu(100) led to a shift and asymmetric
broadening of the correlation traces as
compared to the Cu(111) reference (Fig.
2). The deduced decay times—t1 5 40 6
6 fs, t2 5 110 6 10 fs, and t3 5 300 6 15
fs—increase significantly with n, as ex-
pected theoretically.

Under the present experimental condi-
tions, the measured 2PPE intensity from
each of the levels n 5 1, 2, and 3 simply
reflects the temporal evolution of the pop-
ulation of a single quantum state. Coherent
phenomena arising from the simultaneous
excitation of more than one state did not
occur for the widely separated low-n image-
potential states. When states with n $ 4
were excited, the bandwidth of our 95-fs
pump pulses (14-meV full width at half

maximum) became comparable to the en-
ergy separation of the states of the Rydberg
series, and the coherent excitation of more
than one eigenstate became possible, result-
ing in a different dynamical behavior of
these electrons.

The recorded 2PPE intensity corre-
sponding to a binding energy of EB . 40
meV (Fig. 3A) shows an overall decay of
the intensity on a time scale of roughly 1 ps,
modulated by strong oscillations. This ex-
periment represents a variant of the well-
known quantum-beat spectroscopy of close-
ly spaced states (3). In the simple case of
coherent excitation of two levels ⎪n& and
⎪n 1 1&, the oscillations reflect the beating
between the corresponding wave functions
Cn(t) 5 ⎪n&exp(2ivnt) and Cn11(t) 5
⎪n 1 1&exp(2ivn11t). Provided there is no
loss of coherence, the 2PPE intensity I(t)
long after the pulse is given by

I~t! } ⎪an~t!Cn~t! 1 an11~t!Cn11~t!⎪2 (2a)

} an
2 1 an11

2 1 2anan11cos~vn,n11t!
(2b)

with the (exponentially) decaying coeffi-
cients an(t) and an11(t) and a beat frequen-
cy of nn,n11 5 vn,n11/2p 5 (En11 2 En)/h
(h 5 4.136 eV fs).

For EB . 40 meV, the 95-fs pump pulse
predominantly excites electrons into the
n 5 4 and n 5 5 states. The beating period
observed for short delays is n4,5

21 5 230 fs
(Fig. 3A), corresponding to an energy dif-
ference between the states DE4,5 5 hn4,5 5
17.8 meV. After 2 ps, most of the popula-
tion in the n 5 4 state has decayed. The
oscillations now reflect the interference of
the amplitudes in the n 5 5 state and the
weakly excited n 5 6 state that persist at
these delays (n5,6

21 5 430 fs; DE5,6 5 9.6

meV). In general, the Fourier transform of
the raw data directly yields the various
beating frequencies (Fig. 3A, inset). The
two main frequency components are 4.3
and 2.3 THz, which yield energy differenc-
es of 17.8 and 9.6 meV, respectively. The
deduced values are slightly higher than
the theoretical energy differences expect-
ed from Eq. 1 with the quantum defect a 5
0.21 that reproduces the experimental
binding energy for the n 5 1 state. Similar
results have been obtained for a Ag(100)
surface. It must be emphasized that accu-
rate spectroscopy of these states in the
energy domain would require a resolution
in the millielectron volt range, which is
difficult to achieve experimentally (13).
Additionally, time-resolved coherent
spectroscopy is able to provide informa-
tion about the relaxation behavior of the
electrons in these states.

A density matrix formalism has been
used to quantitatively model excitation,
decay, and interference of the image-po-
tential states in a unified way (14). Figure
3B displays the resulting temporal evolu-
tion of the population in the states n 5 4,
5, and 6. The deduced lifetimes are ex-
tremely long for an electronic excitation
on a bare metal surface. For example, t4 5
630 fs corresponds to a Lorentzian line-
width G . 1 meV. This value of t4 is only
slightly smaller than the value of 690 fs
obtained by extrapolating from t3 5 300 fs
using the n3 power law, confirming previ-
ous theoretical predictions (4). The long
lifetimes of high-order image-potential
states are associated with weak overlap
with bulk electronic states. The resulting
low-excitation cross sections have pre-
vented previous time-resolved measure-
ments of states beyond n 5 2 (8).

Fig. 2. The 2PPE cross-correlation traces ob-
tained for the n 5 1, 2, and 3 image-potential
states of Cu(100). For positive delays, the UV ex-
citation pulse preceded the IR probe pulse. Dots
indicate measured data points. The solid lines are
the results of density matrix calculations taking
into account one intermediate state with a finite
lifetime t, as indicated. The dashed line marks the
cross-correlation from the Cu(111) reference in
the absence of a resonant intermediate state.

Fig. 3. Quantum beats observed af-
ter the coherent excitation of image-
potential states with quantum num-
bers n 5 4, 5, and 6 (EB . 40 meV ).
(A) The thick curve corresponds to
the measured 2PPE signal as func-
tion of pump-probe delay. The thin
line is the result of the density matrix
calculation for the two-photon exci-
tation depicted schematically on the
right side of the figure. The dashed
line shows the envelope %a(t ) of the
exciting UV pulse. The Fourier trans-
form was obtained after subtraction
of a smooth exponential decay from
the measured data and directly
gives the beating frequencies n4,5 5
(E5 2 E4)/h and n5,6 5 (E6 2 E5)/h
between the excited states. (B) Rel-
ative population of the individual lev-
els resulting from the calculation and
corresponding decay times tn. The coherent peaks visible for n 5 4 and n 5 6 are caused by off-resonant
excitation of these levels from the continuum of initial states in the metal.
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Green’s functions (Freericks PRL 2009)

2

a simple model. We follow this with the development of a
two-sided Feynman diagram formalism for photoemission
in Sect.IV, and apply this to the same model, illustrating
the use of the formalism in several ways, including a dis-
cussion of population transfer and self-energies in Sect. V.
In Sect. VI we move beyond the simple model and apply
our formalism to a coherence produced in a solid with
dispersing bands. We conclude with a discussion of the
potential applications and limitations.

II. FORMALISM FOR TR-ARPES

The formalism for time- and angle-resolved photoemis-
sion (tr-ARPES) was laid out by Freericks et al.[15] They
conclude that tr-ARPES effectively measures an averaged
lesser Green’s function G<

k (t, t
0) for each momentum k;

given a probe that is temporally described by s(t) which
is centered around the measurement time t0, the pho-
tocurrent I(k,!, t0) may be written as

I(k,!, t0) = �i

ZZ
dt dt0 s(t)s(t0)ei!(t�t0)G<

k (t, t
0). (1)

Here, we have assumed that the matrix elements do not
play a significant role and have seen set to unity; simi-
larly, the photon energy dependence and inner potentials
are external to this part of the evaluation (for a detailed
discussion see Ref. [15]). This expression denotes an ef-
fective averaging of G<

k (t, t
0) in a window set by the probe

pulses, and a Fourier transform along the relative time di-
rection trel ⌘ t� t0. t0 is also known as the average time
tave ⌘ (1/2) (t+ t0), and it indicates the time delay in the
experiment between the pump and the probe. Thus, to
investigate tr-ARPES, one has simply to obtain the lesser
Green’s function. This approach was used successfully for
a variety of systems, including strongly correlated materi-
als, superconductors, excitonic insulators, as well as sim-
pler interacting systems.[4, 15–19] These approaches used
a Green’s function formalism, which naturally provides
access to G<(t, t0). However, coherences are more natu-
rally described by a density matrix formalism, which is
the approach we will follow here.

The contour-ordered Green’s function is defined as

GC
k(t, t

0) = �ihTC ĉk(t)ĉ†k(t
0)i, (2)

where TC is the time-ordering operator on the Keldysh
contour, ĉ†k and ĉk are the creation and annihilation op-
erators for the state k. The lesser Green’s function has
the arguments t and t0 on the lower and upper contour,
respectively, and may be written as

G<
k (t, t

0) = ihĉ†k(t
0)ĉk(t)i. (3)

We may evaluate this expression using a density matrix
formalism,

G<
k (t, t

0) = iTr{ĉ†k(t
0)ĉk(t)⇢}, (4)

where ⇢ is the density matrix of the system at a reference
time (which we will use to set t = 0). Then, using the
time evolution operators Û(t, t0) for the operators,

G<
k (t, t

0) = iTr{Û(0, t0)ĉ†kÛ(t0, t)ĉkÛ(t, 0)⇢}, (5)

where we have used Û(t0, t1)Û(t1, t) = Û(t0, t).
It is illustrative to demonstrate that this produces the

expected result for a typical thermal (mixed) state in the
grand canonical ensemble for M states with energies {"p},

⇢ =
1

Z
X

n1...nM

Y

p

e��⇠pnp(ĉ†p)
np |⌦ih⌦|

Y

p0

(ĉp0)np0 , (6)

where Z is the partition function and � the inverse tem-
perature. The sum is over all possible occupations of the
states 1 . . .M . Here, |⌦i is the vacuum state, ⇠p = "p�µ,
and µ is the chemical potential. A straightforward appli-
cation of the operators and time evolution yields

G<
k (t, t

0) =
i

Z e�i"k(t�t0)e��⇠k Tr0 ⇢, (7)

where Tr0 is a partial trace excluding the state k that was
picked out by the operators in the Green’s function. The
partial trace and partition function may be combined, and
we arrive at

G<
k (t, t

0) = inke
�i"k(t�t0), (8)

where nk is the Fermi function nk =
⇥
1 + e�⇠k

⇤�1. This is
the lesser Green’s function evaluated in a basis of single-
particle eigenstates, and may subsequently be used to de-
termine the photocurrent. In equilibrium, we may simply
rotate t� t0 ! trel (the relative time coordinate) and per-
form a Fourier transform from trel to !, which would yield
a peak at the energy ! = "k.

If the single-particle excitation is not an eigenstate, the
lesser Green’s function decays due to the imaginary part
of the self-energy ⌃00 (the real part is denoted by ⌃0)

G<
k (t, t

0) = inke
�i("k+⌃0)(t�t0)�⌃00|t�t0|. (9)

The decay in the time domain leads to a line width in
frequency.
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a simple model. We follow this with the development of a
two-sided Feynman diagram formalism for photoemission
in Sect.IV, and apply this to the same model, illustrating
the use of the formalism in several ways, including a dis-
cussion of population transfer and self-energies in Sect. V.
In Sect. VI we move beyond the simple model and apply
our formalism to a coherence produced in a solid with
dispersing bands. We conclude with a discussion of the
potential applications and limitations.

II. FORMALISM FOR TR-ARPES

The formalism for time- and angle-resolved photoemis-
sion (tr-ARPES) was laid out by Freericks et al.[15] They
conclude that tr-ARPES effectively measures an averaged
lesser Green’s function G<

k (t, t
0) for each momentum k;

given a probe that is temporally described by s(t) which
is centered around the measurement time t0, the pho-
tocurrent I(k,!, t0) may be written as

I(k,!, t0) = �i

ZZ
dt dt0 s(t)s(t0)ei!(t�t0)G<

k (t, t
0). (1)

Here, we have assumed that the matrix elements do not
play a significant role and have seen set to unity; simi-
larly, the photon energy dependence and inner potentials
are external to this part of the evaluation (for a detailed
discussion see Ref. [15]). This expression denotes an ef-
fective averaging of G<

k (t, t
0) in a window set by the probe

pulses, and a Fourier transform along the relative time di-
rection trel ⌘ t� t0. t0 is also known as the average time
tave ⌘ (1/2) (t+ t0), and it indicates the time delay in the
experiment between the pump and the probe. Thus, to
investigate tr-ARPES, one has simply to obtain the lesser
Green’s function. This approach was used successfully for
a variety of systems, including strongly correlated materi-
als, superconductors, excitonic insulators, as well as sim-
pler interacting systems.[4, 15–19] These approaches used
a Green’s function formalism, which naturally provides
access to G<(t, t0). However, coherences are more natu-
rally described by a density matrix formalism, which is
the approach we will follow here.

The contour-ordered Green’s function is defined as
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0) = �ihTC ĉk(t)ĉ†k(t
0)i, (2)

where TC is the time-ordering operator on the Keldysh
contour, ĉ†k and ĉk are the creation and annihilation op-
erators for the state k. The lesser Green’s function has
the arguments t and t0 on the lower and upper contour,
respectively, and may be written as

G<
k (t, t

0) = ihĉ†k(t
0)ĉk(t)i. (3)

We may evaluate this expression using a density matrix
formalism,
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0) = iTr{ĉ†k(t
0)ĉk(t)⇢}, (4)

where ⇢ is the density matrix of the system at a reference
time (which we will use to set t = 0). Then, using the
time evolution operators Û(t, t0) for the operators,
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0) = iTr{Û(0, t0)ĉ†kÛ(t0, t)ĉkÛ(t, 0)⇢}, (5)

where we have used Û(t0, t1)Û(t1, t) = Û(t0, t).
It is illustrative to demonstrate that this produces the

expected result for a typical thermal (mixed) state in the
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where Z is the partition function and � the inverse tem-
perature. The sum is over all possible occupations of the
states 1 . . .M . Here, |⌦i is the vacuum state, ⇠p = "p�µ,
and µ is the chemical potential. A straightforward appli-
cation of the operators and time evolution yields
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k (t, t

0) =
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Z e�i"k(t�t0)e��⇠k Tr0 ⇢, (7)

where Tr0 is a partial trace excluding the state k that was
picked out by the operators in the Green’s function. The
partial trace and partition function may be combined, and
we arrive at
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k (t, t

0) = inke
�i"k(t�t0), (8)

where nk is the Fermi function nk =
⇥
1 + e�⇠k

⇤�1. This is
the lesser Green’s function evaluated in a basis of single-
particle eigenstates, and may subsequently be used to de-
termine the photocurrent. In equilibrium, we may simply
rotate t� t0 ! trel (the relative time coordinate) and per-
form a Fourier transform from trel to !, which would yield
a peak at the energy ! = "k.

If the single-particle excitation is not an eigenstate, the
lesser Green’s function decays due to the imaginary part
of the self-energy ⌃00 (the real part is denoted by ⌃0)

G<
k (t, t

0) = inke
�i("k+⌃0)(t�t0)�⌃00|t�t0|. (9)

The decay in the time domain leads to a line width in
frequency.
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where Z is the partition function and � the inverse tem-
perature. The sum is over all possible occupations of the
states 1 . . .M . Here, |⌦i is the vacuum state, ⇠p = "p�µ,
and µ is the chemical potential. A straightforward appli-
cation of the operators and time evolution yields
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where Tr0 is a partial trace excluding the state k that was
picked out by the operators in the Green’s function. The
partial trace and partition function may be combined, and
we arrive at
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0) = inke
�i"k(t�t0), (8)

where nk is the Fermi function nk =
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⇤�1. This is
the lesser Green’s function evaluated in a basis of single-
particle eigenstates, and may subsequently be used to de-
termine the photocurrent. In equilibrium, we may simply
rotate t� t0 ! trel (the relative time coordinate) and per-
form a Fourier transform from trel to !, which would yield
a peak at the energy ! = "k.

If the single-particle excitation is not an eigenstate, the
lesser Green’s function decays due to the imaginary part
of the self-energy ⌃00 (the real part is denoted by ⌃0)
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The decay in the time domain leads to a line width in
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G<
k (t, t
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perature. The sum is over all possible occupations of the
states 1 . . .M . Here, |⌦i is the vacuum state, ⇠p = "p�µ,
and µ is the chemical potential. A straightforward appli-
cation of the operators and time evolution yields
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where Tr0 is a partial trace excluding the state k that was
picked out by the operators in the Green’s function. The
partial trace and partition function may be combined, and
we arrive at
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where nk is the Fermi function nk =
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⇤�1. This is
the lesser Green’s function evaluated in a basis of single-
particle eigenstates, and may subsequently be used to de-
termine the photocurrent. In equilibrium, we may simply
rotate t� t0 ! trel (the relative time coordinate) and per-
form a Fourier transform from trel to !, which would yield
a peak at the energy ! = "k.

If the single-particle excitation is not an eigenstate, the
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must decay as
∣∣Cn(t)

∣∣2 =
∣∣Cn(0)

∣∣2e−!nt , (3.3.27)

and thus the probability amplitude must vary in time as

Cn(t) = Cn(0)e−iωnt e−!nt/2. (3.3.28)

Likewise, the probability amplitude of being in level m must vary as

Cm(t) = Cm(0)e−iωmte−!mt/2. (3.3.29)

Thus, the coherence between the two levels must vary as

C∗
n(t)Cm(t) = C∗

n(0)Cm(0)e−iωmnt e−(!n+!m)t/2. (3.3.30)

But since the ensemble average of C∗
nCm is just ρmn, whose damping rate is

denoted γmn, it follows that

γmn = 1
2 (!n + !m). (3.3.31)

3.3.1. Example: Two-Level Atom

As an example of the use of the density matrix formalism, we apply it to the
simple case illustrated in Fig. 3.3.1, in which only the two atomic states a

and b interact appreciably with the incident optical field. The wavefunction
describing state s of such an atom is given by

ψs(r, t) = Cs
a(t)ua(r) + Cs

b(t)ub(r), (3.3.32)

and thus the density matrix describing the atom is the two-by-twomatrix given
explicitly by

[
ρaa ρab

ρba ρbb

]
=

[
CaC∗

a CaC
∗
b

CbC∗
a CbC

∗
b

]
. (3.3.33)

The matrix representation of the dipole moment operator is

µ̂ ⇒
[
0 µab

µba 0

]
, (3.3.34)

FIGURE 3.3.1 A two-level atom.
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wavy arrow, and (according to the discussion above) each
comes with a matrix element of cos(✓) or sin(✓) depending
on whether the photoemission comes from the |ai or |bi
states, respectively. In between the pump/photoemission
processes, the time evolution occurs as usual; a state |aihb|
in the diagram evolving for a time ⌧ acquires a phase
exp [�i("a � "b)⌧ ]. With these rules in place, we may
read off the contribution from the diagrams above as

G<,coh(t, t0) = �i cos(✓) sin(✓)µcaµbc⇥h
e�i("a�"b)t ei"b(t

0�t) + e�i("b�"a)tei"a(t
0�t)

i
. (20)

Here we have assumed that the matrix elements are purely
real. Simple manipulations show that this is identical to
Eq. 15 and Eq. 17, and that these diagrams are thus a
faithful representation of the process.

|0ih0|
|0ihb|
|aihb|
|cihc|

������������

������������

↵̂(t0)

t = t0 = 0

↵̂(t)

e�i("a�"b)tei"b(t
0�t)

|0ih0|
|0ih↵|
|↵ihb|
|cihc|

������������

������������

↵̂(t0)

t = t0 = 0

↵̂(t)

(cos ✓ sin ✓) e�i("a�"b)tei"b(t
0�t)=

FIG. 3. Illustration of the change of basis and evaluation of
a coherent contribution |aihb| to time-resolved photoemission
using two-sided Feynman diagrams.

B. Change of basis

To illustrate the power of this approach, we will use it to
evaluate the coherent state contribution to time-resolved
ARPES by going through the change of variables from
band to orbital (shown in Fig. 3). Below, we will use
roman characters to denote the band basis, and greek for
the orbital basis; these bases are related by

|↵i = cos(✓) |ai+ sin(✓) |bi (21a)
|�i = � sin(✓) |ai+ cos(✓) |bi (21b)

First, in band basis, we produce a coherence |aihb| at time
zero, which is propagated to time t, picking up a phase

exp [�i ("a � "b) t]. After photoemission, we are left with
a new coherence |0ihb|, which is propagated through a
time t0� t, picking up a phase exp [i"b (t0 � t)]. This state
is acted on by the second part of the photoemission op-
erator, leading to |0ih0| at which point we may close the
trace. The change of variables from band (a, b) to orbital
(↵,�) basis would lead to four separate terms; however,
diagrammatically it is easy to see which diagrams should
be kept: those with terms ↵ on both sides of the diagram.

C. Evaluation of the full photoemission signal

In this section, we will combine the diagrams for the
coherence together with the populations. Using the two-
sided Feynman diagrams, it is straightforward to evaluate
the full set of contributions to the time-resolved photoe-
mission signal, including both the coherent and popula-
tion pieces. The full set of diagrams is shown in Fig. 4.
Here we have shown the case where t0 > t; the other case
leads to the same result. We find

G<(t, t0) =i⇢2ae
�i"a(t�t0) + i⇢2be

�i"b(t�t0)

+i⇢a⇢b
⇣
e�i"at+i"bt

0
+ e�i"bt+i"at

0
⌘
, (22)

where ⇢a = µca cos(✓) and ⇢b = µcb sin(✓). We note that
this may be factorized as

G<(t, t0) =i
�
⇢ae

�i"at + ⇢be
�i"bt

�

⇥
⇣
⇢ae

i"at
0
+ ⇢be

i"bt
0
⌘
. (23)

We can use this form to decompose the Fourier transform
used to evaluate the photocurrent, Eq. 1. Note that it
involves an integral over both t and t0. When the lesser
Green’s function can be written as a product of two fac-
tors each involving only t and t0, the Fourier transform
may be factored as

I(!, t0) =
����
Z

dt s(t)ei!t
�
⇢ae

�i"at + ⇢be
�i"bt

�����
2

, (24)

which shows that the signal is positive definite (as one
should expect for a photocurrent). When s(t) is a Gaus-
sian shape function of width �t, we may evaluate Eq. 24
exactly and obtain

I(!, t0) =
��⇢ae�i"at0ga(!) + ⇢be

�i"bt0gb(!)
��2

= ⇢2aga(!)
2 + ⇢2bgb(!)

2

+ ⇢a⇢b cos [("a � "b) t0] ga(!)gb(!), (25)

Two-sided Feynman pathway diagrams
for photoemission & ARPES

arXiv:2005.08978
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|0ih0|
|0iha|
|aiha|
|cihc|

������������

������������

↵̂(t0)

t = t0 = 0

↵̂(t)
|0ih0|
|0ihb|
|aihb|
|cihc|

������������

������������

↵̂(t0)

t = t0 = 0

↵̂(t)
|0ih0|
|0iha|
|biha|
|cihc|

������������

������������

↵̂(t0)

t = t0 = 0

↵̂(t)
|0ih0|
|0ihb|
|bihb|
|cihc|

������������

������������

↵̂(t0)

t = t0 = 0

↵̂(t)

FIG. 4. Full set of diagrams for the photoemission from the set of states {|ai , |bi}. The ↵̂ operators are defined in the main
text.

FIG. 5. Time-resolved photoemission from a coherent state
(created at t = 0) with an energy separation �" = "a�"b. All
energies are measured in units of the energy resolution �! =
��1. (a) and (b) show photoemission with equal probabilities
of emission ✓ = ⇡/4 and preferential photoemission of the
lower energy state ✓ = ⇡/6, respectively. The three columns
represent three values of �"; note that the horizontal axis has
been scaled so the oscillation frequency appears identical.

where ga(!) is a Gaussian function of width ��1
t ⌘ �!

centered around "a, and similar for gb(!). In the inter-
ference term, where the product ga(!)gb(!) appears, we
may rewrite this as

ga(!)gb(!) = e
� 1

2�2
!
(!�"a)

2

e
� 1

2�2
!
(!�"a)

2

⌘ e
� 1

�2
!

⇣
!� "a+"b

2

⌘2

e
� 1

4�2
!
("a�"b)

2

(26)

We see that this term suppress the interference once the
separation between "a and "b becomes large on the scale
of the energy resolution �!. It also indicates that the in-
terference signal appears halfway between the two levels,
in agreement with the simpler analysis that resulted in
Eq. 17.

The resulting photoemission intensities from Eq. 25 for
several values of energy separation �" ⌘ "a�"b and mix-
ing angle ✓ are shown in Fig. 5. To simulate the pump-
ing process we have applied a smooth cutoff at t = 0.

For equal probabilities of photoemission (✓ = ⇡/4) from
both states (Fig. 5(a)) at small �"/�! the intensity is
fully oscillatory. As the energy separation between the
levels increases, the signal resolves into the separate lev-
els at "a/"b, with a weak oscillation in between. When
the photoemission process favors the lower energy state
(✓ = ⇡/6), at small �"/�! the signal shows an oscillatory
component that lives at slightly higher energy than the
stationary component. As �" increases, a second peak
due to the higher energy state becomes visible, with os-
cillations occurring in the center between the peaks. This
second situation, where the mixing is not equal, is par-
ticularly noteworthy as a hallmark of coherent state dy-
namics—other dynamics that give rise to an oscillation in
the photoelectron intensity, e.g. coherent phonons, typ-
ically shift states in energy, rather than simply varying
the intensity.

V. DECAY

In the above, we considered the situation where there
was no decay of populations or coherence; however, there
are sources of decay in both[7]. Here we consider two:
population transfer, and dephasing due to the self-energy.

First, let us consider the population portion of the den-
sity matrix (c.f. Fig. 4). While the system is in the
population |aiha|, the decay is solely due to the popu-
lation transfer out of this state. This process is typically
what is measured in time-resolved photoemission studies.
Naively, in reading the diagram we would assign a decay
factor exp (��amin (t, t0)) since the coherence is present
until the earlier of times t and t0. However, this is an over-
simplification; the correct approach is to solve the Lind-
blad equation (or the time domain Dyson equation[3])
because the time dynamics in average time and relative
time are not separable. Here, we will work with an ap-
proximation where the population decay rate �a is small
compared to the system energy scales (� ⌧ "a,⌃); this
simplifies the decay factor to exp (��atave). After the first
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FIG. 4. Full set of diagrams for the photoemission from the set of states {|ai , |bi}. The ↵̂ operators are defined in the main
text.

FIG. 5. Time-resolved photoemission from a coherent state
(created at t = 0) with an energy separation �" = "a�"b. All
energies are measured in units of the energy resolution �! =
��1. (a) and (b) show photoemission with equal probabilities
of emission ✓ = ⇡/4 and preferential photoemission of the
lower energy state ✓ = ⇡/6, respectively. The three columns
represent three values of �"; note that the horizontal axis has
been scaled so the oscillation frequency appears identical.

where ga(!) is a Gaussian function of width ��1
t ⌘ �!

centered around "a, and similar for gb(!). In the inter-
ference term, where the product ga(!)gb(!) appears, we
may rewrite this as

ga(!)gb(!) = e
� 1

2�2
!
(!�"a)
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e
� 1

2�2
!
(!�"a)

2

⌘ e
� 1

�2
!

⇣
!� "a+"b
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� 1

4�2
!
("a�"b)

2

(26)

We see that this term suppress the interference once the
separation between "a and "b becomes large on the scale
of the energy resolution �!. It also indicates that the in-
terference signal appears halfway between the two levels,
in agreement with the simpler analysis that resulted in
Eq. 17.

The resulting photoemission intensities from Eq. 25 for
several values of energy separation �" ⌘ "a�"b and mix-
ing angle ✓ are shown in Fig. 5. To simulate the pump-
ing process we have applied a smooth cutoff at t = 0.

For equal probabilities of photoemission (✓ = ⇡/4) from
both states (Fig. 5(a)) at small �"/�! the intensity is
fully oscillatory. As the energy separation between the
levels increases, the signal resolves into the separate lev-
els at "a/"b, with a weak oscillation in between. When
the photoemission process favors the lower energy state
(✓ = ⇡/6), at small �"/�! the signal shows an oscillatory
component that lives at slightly higher energy than the
stationary component. As �" increases, a second peak
due to the higher energy state becomes visible, with os-
cillations occurring in the center between the peaks. This
second situation, where the mixing is not equal, is par-
ticularly noteworthy as a hallmark of coherent state dy-
namics—other dynamics that give rise to an oscillation in
the photoelectron intensity, e.g. coherent phonons, typ-
ically shift states in energy, rather than simply varying
the intensity.

V. DECAY

In the above, we considered the situation where there
was no decay of populations or coherence; however, there
are sources of decay in both[7]. Here we consider two:
population transfer, and dephasing due to the self-energy.

First, let us consider the population portion of the den-
sity matrix (c.f. Fig. 4). While the system is in the
population |aiha|, the decay is solely due to the popu-
lation transfer out of this state. This process is typically
what is measured in time-resolved photoemission studies.
Naively, in reading the diagram we would assign a decay
factor exp (��amin (t, t0)) since the coherence is present
until the earlier of times t and t0. However, this is an over-
simplification; the correct approach is to solve the Lind-
blad equation (or the time domain Dyson equation[3])
because the time dynamics in average time and relative
time are not separable. Here, we will work with an ap-
proximation where the population decay rate �a is small
compared to the system energy scales (� ⌧ "a,⌃); this
simplifies the decay factor to exp (��atave). After the first
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FIG. 7. tr-ARPES of a coherence produced at the avoided crossing between a heavy and light band. Panels a) and b) represent
an energy resolution smaller and larger than the gap, respectively (0.8� and 1.2�). The dispersions (left) are shown at the first
maximum t = 0 and minimum t = ⇡/�"min. The vertical lines on the dispersions indicate three particular momenta, and the
energy distribution curves are shown at these momenta on the right.

the potential advantage of this technique in accessing the
smallest energy scales.

FIG. 8. Coherent part of the energy integrated tr-ARPES
signal for a coherence produced at t0 = 0 (upper panel). Here,
�! = �. The lower panel illustrates the band structure.

For dispersive bands, the oscillation frequency varies
rapidly with momentum, leading to a beating pattern
even though each momentum oscillates at its own fre-
quency (see supplemental movies). In turn, this suggests
that a potential inversion is possible; if the oscillations can
be measured as a function of momentum, the gap between
the bands may also be resolved as a function of momen-
tum. Conversely, if little to no momentum dependence is
seen, this suggests a large regime of bands with a constant
gap (e.g. as seen in SmB6[20]). This is best illustrated by
considering coherent part of the energy-integrated signal,

�Icoh(k, t0) / ⇢a⇢b cos (�"t0) e
� 1

4�2
!
("a�"b) (31)

shown in Fig. 8 for �! = �. The slowest oscillations (with
the strongest signal) occur where the energy difference �"
is minimal; as �" increases, the amplitude of the oscilla-
tions decreases.
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Theoretical approaches to time-resolved ARPES of coherences

electron-phonon coupling with atomic specificity, to further
complement neutron and IXS measurements.

II. EXPRESSIONS FOR PHONON
CONTRIBUTIONS TO RIXS

Since we are interested in the generic ways in which
phonons can be coupled in RIXS, we consider weak
electron-phonon coupling and examine the one-phonon
contribution to RIXS (Figs. 1 and 2). While other consid-
erations involving the ratio of the main intensities to
satellites offer a way to quantify electron-phonon coupling
for generic-model Hamiltonians [5,24], our approach
follows an extension of resonant Raman scattering from
phonons, extended to arbitrary momentum transfers and
different x-ray resonant edge processes. We examine the
interplay of light polarization configurations with specific
momentum-dependent electron-phonon coupling for dif-
ferent classes of coupling (for example, deformation,

piezoelectric, and electrostatic), for some oxygen modes
common to perovskites. Here, we neglect the role of
Coulomb interactions, both among and between the
valence electrons and the core hole. While the role of
Coulomb interactions is crucial for indirect RIXS proc-
esses [2], and for couplings at the BZ center, for larger
momentum processes, it plays only a minor role
[11,28,29].
The phonon branches are characterized by a frequency

ΩνðqÞ for each mode ν, as well as a generalized coupling to
electrons gα;βν ðk;qÞ. Here, gα;βν ðk;qÞ denotes the coupling
of phonon mode ν to an electron in band α carrying
momentum k scattering into band β with momentum
kþ q. The total RIXS response contains two contributions
from these two diagrams, χ ¼ χbare þ χphonon, each of
which depends upon ki, kf, q, ωi, ωf, Ω, where
q ¼ ki − kf and Ω ¼ ωi − ωf.
For the bare loop contribution (Fig. 1), we have [30]

χα;βbareðki;kf;qjωi;ωf;ΩÞ ¼
1

N

X

p

½ei · dα;βðpþ q;p − kfÞ&½ef · dβ;αðp − kf;pÞ&

× ½ei · dα;βðp − kf;pþ qÞ&½ef · dβ;αðp;p − kfÞ&

×
Z

þ∞

−∞
dω½fð−ω −ΩÞ − fð−ωÞ&jGβðp − kf;ω − ωfÞj2

×
!
−
1

π
ℑGαðp;ωÞ

"!
−
1

π
ℑGαðpþ q;ωþΩÞ

"
; ð1Þ

where ℑ denotes the imaginary part and α, β denote the
conduction and core electron, respectively, appropriate for
a direct RIXS transition. The matrix elements generally
depend on the incident and scattered photon momentum
ðki;fÞ, energy ðωi;fÞ, and polarizations ei;f, respectively,
including the light dipole couplings dα;βðk;pÞ involving

the resonant photoexcitation of a β core hole with
momentum p into the α band with momentum k.
As a concrete example, our target will be an under-

standing of lattice coupling in the cuprates, to which end we
consider a Cu L-edge scattering process where a Cu 2p
core electron is photoexcited into the 3d valence band at a
resonant energy around 931 eV (Cu L3-edge). However, the
formalism will work equally well for other resonant
excitations involving core electrons and valence states,
such as the oxygen K-edge.

FIG. 2. Leading-order one-phonon contribution to RIXS. The
dotted lines denote the Cu 2p hole, solid lines denote the 3d
conduction electrons, and the circular line denotes the phonon.
Notation for the vertices has been suppressed.

FIG. 1. Electron-hole contribution to RIXS (bare diagram). The
dotted lines denote the Cu 2p hole, and solid lines denote the 3d
conduction electrons. Notation for the vertices has been suppressed.

DIRECTLY CHARACTERIZING THE RELATIVE STRENGTH … PHYS. REV. X 6, 041019 (2016)
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quency (see supplemental movies). In turn, this suggests
that a potential inversion is possible; if the oscillations can
be measured as a function of momentum, the gap between
the bands may also be resolved as a function of momen-
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seen, this suggests a large regime of bands with a constant
gap (e.g. as seen in SmB6[20]). This is best illustrated by
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shown in Fig. 8 for �! = �. The slowest oscillations (with
the strongest signal) occur where the energy difference �"
is minimal; as �" increases, the amplitude of the oscilla-
tions decreases.
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Correlation functions

hA(r, t)B(r0, t0)i A(r, t)

B(r0, t0)
Given some (observable) operator B at 
(r’,t’), what is the likelihood of some 
(observable) operator A at (r,t)?



A(r, t)

B(r0, t0)

Conductivity

Single-particle spectra (ARPES)

Spin-resolved neutron scattering

hj(r, t)j(r0, t0)i

hc(r, t)c†(r0, t0)i

�x,y,z
↵� hS↵(r, t)S�(r

0, t0)i

Correlation functions



hA(r, t)B(r0, t0)i A(r, t)

B(r0, t0)
Time-translation invariance:

hA(r, trelative)B(r0, 0)i

We typically Fourier transform and work in the frequency (energy) domain:

�(!) =

Z 1

�1
hA(r, trelative)B(r0, 0)iei!trelativedtrelative

Correlation functions



G<(r, t; r0, t0) = ihc†(r0, t0)c(r, t)i/Z

Damascelli, Rev. Mod. Phys. 75, 473 (2003)
Freericks, et al., PRL 102, 136401 (2009)

(Plus a few steps)
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A(r, t)

B(r0, t0)

Given that I create a single particle 
excitation at (r,t), what is the probability 
that I may find it at (r’,t’)?

Space-translation invariance: go into 
Bloch basis with quasi-momentum

G<(r, t; r0, t0) = ihc†(r0, t0)c(r, t)i/Z

G<
k (t, t

0) = ihc†k(t
0)ck(t)i/Z
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G<
k (t, t

0) = ihc†k(t
0)ck(t)i/Z

Density matrix Eigenstates

= �i
X

�

⇢�h � |c†k(t
0)ck(t)| �i

h � |c†k(t
0)ck(t)| �i = h � |U(t0, t

0)c†kU(t0, t)ckU(t, t0)| �i

Time evolution operators

Correlation functions – an example: ARPES



h � |c†k(t
0)ck(t)| �i = h � |U(t0, t

0)c†kU(t0, t)ckU(t, t0)| �i
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Figure 6.2 Representation of the states |Φ1〉 and |Φ2〉 appearing in (6.25).

of ĤM with eigenvalue EM
k so that ρk = e−βE

M
k /Z . It is straightforward to verify that the

greater/lesser Green’s function has the property

[G>
ji(t, t

′)]∗ = −G>
ij(t
′, t) [G<

ji(t, t
′)]∗ = −G<

ij(t
′, t) (6.23)

and consequently the retarded and advanced Green’s functions are related by

Ĝ
R
(t, t′) = θ(t− t′)

[

Ĝ
>
(t, t′)− Ĝ

<
(t, t′)

]

=
[

Ĝ
A
(t′, t)

]†
(6.24)

Below we discuss the lesser Green’s function and leave it as an exercise for the reader to go
through the same logical and mathematical steps in the case of the greater Green’s function.

A generic term of the sum in (6.21) contains the quantity

〈Ψk|d̂†i,H(t′)d̂j,H(t)|Ψk〉 = 〈Ψk|Û(t0, t
′)d̂†i

︸ ︷︷ ︸

〈Φ1|

Û(t′, t) d̂j Û(t, t0)|Ψk〉
︸ ︷︷ ︸

|Φ2〉

, (6.25)

with Û the evolution operator (3.15). This quantity is proportional to the probability amplitude
that evolving |Ψk〉 from t0 to t, then removing a particle with quantum number j and letting
the new state evolve from t to t′ (this state is |Φ2〉) we find the same state as evolving |Ψk〉
from t0 to t′, at which time a particle with quantum number i is removed (this state is
|Φ1〉), see Fig. 6.2. As suggested by the figure, when time passes the disturbance (removal
of a particle) “spreads” if j is not a good quantum number and, therefore, it is reasonable
to expect that the probability amplitude vanishes for |t − t′| → ∞ independently of the
quantum number i. Of course, this expectation makes sense provided that the system has
infinitely many degrees of freedom coupled to each other. If the system has only a finite
number of degrees of freedom (as, e.g., in the PPP model for benzene or in the Hubbard
dimer discussed in Chapter 2) then the probability amplitude exhibits an oscillatory behavior.

|�2i|�1i†
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wavy arrow, and (according to the discussion above) each
comes with a matrix element of cos(✓) or sin(✓) depending
on whether the photoemission comes from the |ai or |bi
states, respectively. In between the pump/photoemission
processes, the time evolution occurs as usual; a state |aihb|
in the diagram evolving for a time ⌧ acquires a phase
exp [�i("a � "b)⌧ ]. With these rules in place, we may
read off the contribution from the diagrams above as

G<,coh(t, t0) = �i cos(✓) sin(✓)µcaµbc⇥h
e�i("a�"b)t ei"b(t

0�t) + e�i("b�"a)tei"a(t
0�t)

i
. (20)

Here we have assumed that the matrix elements are purely
real. Simple manipulations show that this is identical to
Eq. 15 and Eq. 17, and that these diagrams are thus a
faithful representation of the process.
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������������

������������
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t = t0 = 0

↵̂(t)

e�i("a�"b)tei"b(t
0�t)

|0ih0|
|0ih↵|
|↵ihb|
|cihc|

������������

������������

↵̂(t0)

t = t0 = 0

↵̂(t)

(cos ✓ sin ✓) e�i("a�"b)tei"b(t
0�t)=

FIG. 3. Illustration of the change of basis and evaluation of
a coherent contribution |aihb| to time-resolved photoemission
using two-sided Feynman diagrams.

B. Change of basis

To illustrate the power of this approach, we will use it to
evaluate the coherent state contribution to time-resolved
ARPES by going through the change of variables from
band to orbital (shown in Fig. 3). Below, we will use
roman characters to denote the band basis, and greek for
the orbital basis; these bases are related by

|↵i = cos(✓) |ai+ sin(✓) |bi (21a)
|�i = � sin(✓) |ai+ cos(✓) |bi (21b)

First, in band basis, we produce a coherence |aihb| at time
zero, which is propagated to time t, picking up a phase

exp [�i ("a � "b) t]. After photoemission, we are left with
a new coherence |0ihb|, which is propagated through a
time t0� t, picking up a phase exp [i"b (t0 � t)]. This state
is acted on by the second part of the photoemission op-
erator, leading to |0ih0| at which point we may close the
trace. The change of variables from band (a, b) to orbital
(↵,�) basis would lead to four separate terms; however,
diagrammatically it is easy to see which diagrams should
be kept: those with terms ↵ on both sides of the diagram.

C. Evaluation of the full photoemission signal

In this section, we will combine the diagrams for the
coherence together with the populations. Using the two-
sided Feynman diagrams, it is straightforward to evaluate
the full set of contributions to the time-resolved photoe-
mission signal, including both the coherent and popula-
tion pieces. The full set of diagrams is shown in Fig. 4.
Here we have shown the case where t0 > t; the other case
leads to the same result. We find

G<(t, t0) =i⇢2ae
�i"a(t�t0) + i⇢2be

�i"b(t�t0)

+i⇢a⇢b
⇣
e�i"at+i"bt

0
+ e�i"bt+i"at

0
⌘
, (22)

where ⇢a = µca cos(✓) and ⇢b = µcb sin(✓). We note that
this may be factorized as

G<(t, t0) =i
�
⇢ae

�i"at + ⇢be
�i"bt

�

⇥
⇣
⇢ae

i"at
0
+ ⇢be

i"bt
0
⌘
. (23)

We can use this form to decompose the Fourier transform
used to evaluate the photocurrent, Eq. 1. Note that it
involves an integral over both t and t0. When the lesser
Green’s function can be written as a product of two fac-
tors each involving only t and t0, the Fourier transform
may be factored as

I(!, t0) =
����
Z

dt s(t)ei!t
�
⇢ae

�i"at + ⇢be
�i"bt

�����
2

, (24)

which shows that the signal is positive definite (as one
should expect for a photocurrent). When s(t) is a Gaus-
sian shape function of width �t, we may evaluate Eq. 24
exactly and obtain

I(!, t0) =
��⇢ae�i"at0ga(!) + ⇢be

�i"bt0gb(!)
��2

= ⇢2aga(!)
2 + ⇢2bgb(!)

2

+ ⇢a⇢b cos [("a � "b) t0] ga(!)gb(!), (25)
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h � |c†k(t
0)ck(t)| �i = h � |U(t0, t

0)c†kU(t0, t)ckU(t, t0)| �i

|�2i|�1i†

When there is no explicit time dependence in the Hamiltonian,

= h � |eiH(t0�t0)c†ke
�iH(t0�t)cke

�iH(t�t0)| �i
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G<(t, t0) = if(⇠k)e
�i⇠k(t�t0)

Correlation functions – an example: ARPES

Assuming the single-particle excitation is an eigenstate, 



t

t’

Relative time

Average 
(measurement)
time
tave =

1

2
(t+ t0)

trel = t� t0

G<(t, t0) = if(⇠k)e
�i⇠k(t�t0)
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G<(!) =

Z 1

�1
d(t� t0)

⇥
if(⇠k)e

�i⇠k(t�t0)
⇤

= 2⇡if(⇠k)�(! � ⇠k)
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greater/lesser Green’s function has the property

[G>
ji(t, t

′)]∗ = −G>
ij(t
′, t) [G<

ji(t, t
′)]∗ = −G<

ij(t
′, t) (6.23)

and consequently the retarded and advanced Green’s functions are related by

Ĝ
R
(t, t′) = θ(t− t′)

[

Ĝ
>
(t, t′)− Ĝ

<
(t, t′)

]

=
[

Ĝ
A
(t′, t)

]†
(6.24)

Below we discuss the lesser Green’s function and leave it as an exercise for the reader to go
through the same logical and mathematical steps in the case of the greater Green’s function.

A generic term of the sum in (6.21) contains the quantity

〈Ψk|d̂†i,H(t′)d̂j,H(t)|Ψk〉 = 〈Ψk|Û(t0, t
′)d̂†i

︸ ︷︷ ︸

〈Φ1|

Û(t′, t) d̂j Û(t, t0)|Ψk〉
︸ ︷︷ ︸

|Φ2〉

, (6.25)

with Û the evolution operator (3.15). This quantity is proportional to the probability amplitude
that evolving |Ψk〉 from t0 to t, then removing a particle with quantum number j and letting
the new state evolve from t to t′ (this state is |Φ2〉) we find the same state as evolving |Ψk〉
from t0 to t′, at which time a particle with quantum number i is removed (this state is
|Φ1〉), see Fig. 6.2. As suggested by the figure, when time passes the disturbance (removal
of a particle) “spreads” if j is not a good quantum number and, therefore, it is reasonable
to expect that the probability amplitude vanishes for |t − t′| → ∞ independently of the
quantum number i. Of course, this expectation makes sense provided that the system has
infinitely many degrees of freedom coupled to each other. If the system has only a finite
number of degrees of freedom (as, e.g., in the PPP model for benzene or in the Hubbard
dimer discussed in Chapter 2) then the probability amplitude exhibits an oscillatory behavior.

Recall that the ARPES correlation 
function
involved

h � |c†k(t
0)ck(t)| �i = h � |U(t0, t

0)c†kU(t0, t)ckU(t, t0)| �i

|�2i|�1i†

Since the single-particle basis is 
not the eigenbasis, the bottom 
situation spreads out and we 
may expect the overlap to 
decay as |t� t0| ! 1

Correlation functions – an example: ARPES



G<(t, t0) = if(⇠k)e
�i⇠k(t�t0)e��|t�t0|

Correlation functions – an example: ARPES



G<(!, k) = �2if(!)Im
1

! � ⇠k � ⌃(!, k)

The self-energy S(w,k) encodes the effect 
of interactions on the single-particle 
Green’s function.

Correlation functions – an example: ARPES



The energy dependence of S(w) is characteristic for a few 
different processes.

Correlation functions – an example: ARPES



G<(!, k) = �2if(!)Im
1

! � ⇠k � ⌃(!, k)

Correlation functions – an example: ARPES



G<(!, k) = �2if(!)Im
1

! � ⇠k � ⌃(!, k)

To first order, the self-energies are 
additive (known as Matthiessen’s rule):

⌃ = ⌃phonon + ⌃Coulomb + ⌃impurity 1/⌧ = �2Im⌃

Going back to the time domain, the 
correlation function decay time is related 

to the self-energy via 

Correlation functions – an example: ARPES



• Depend on time differences (relative times)

• The correlation functions decay due to spreading in 
state space through interactions

• The self-energy encodes the interactions and gives 
rise to the correlation function decay (or line width in 
frequency)

hA(r, trelative)B(r0, 0)i

Correlation functions – an example: ARPES
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Non-equilibrium Correlation functions

hA(r, t)B(r0, t0)i A(r, t)

B(r0, t0)Given some (observable) operator B at 
(r’,t’), what is the likelihood of some 
(observable) operator A at (r,t)?

We can no longer just work with relative 
time because time-translation-
invariance is broken.



hA(r, t)B(r0, t0)i

A(r, t)

B(r0, t0)

t

t’

Relative time

Average 
(measurement)
time
tave =

1

2
(t+ t0)

trel = t� t0

hA(r, tave + trel/2)B(r0, tave � trel/2)i

Non-equilibrium Correlation functions



1. In equilibrium, there is no dynamics 
along the average time direction.  
This steady state is achieved 
through a balance of scattering 
rates.

2. Out of equilibrium, the dynamics 
along average time need not be the 
same as those along relative time –
in general, they are not.

How do we make some 
progress?

Non-equilibrium Correlation functions

hA(r, t)B(r0, t0)i

t

t’

Relative time

tave =
1

2
(t+ t0)

trel = t� t0

Average 
(measurement)
time



• Suppose that
1. We are making measurements 

long after the pump
2. The average (measurement) 

time-dependence is slow 
compared to the time 
dependence in trel (which we 
called G).

• Then we may (carefully) map the 
time dependence onto the 
parameters of the correlation 
function

t

t’

"< ./a.out" u 3:4:5:6

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55

t

t’
tave

trel

"< ./a.out" u 3:4:5:6

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55Small τ Large τ

G<(t, t0) = if(⇠k)e
�i⇠k(trel)e�|trel|/⌧(tave)

Non-equilibrium Correlation functions



• Suppose that
1. We are making measurements 

long after the pump
2. The average (measurement) time-

dependence is slow compared to 
the time dependence in trel (which 
we called G).

• Then we may (carefully) map the time 
dependence onto the parameters of 
the correlation function and Fourier 
transform along trel

Non-equilibrium Correlation functions



• Example parameters that are modeled to change with average time:

– System temperature

– Drude scattering rates

– Coupling constants

– Order parameters (e.g. superconducting gaps)

G. Coslovich, Nature Communications 4, 2643 (2013). 

Non-equilibrium Correlation functions





Changing parameters as a function of time

PROS:

• Easy to understand and 
communicate

• We can rely on our equilibrium 
intuition and knowledge

CONS:

• We only rely on our equilibrium 
intuition and knowledge

• Difficult to tell when it’s 
appropriate and when it isn’t

How can we do better?

Non-equilibrium Correlation functions
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…and about its 
history

( )e t® - Ak k

Include the effects of 
strong driving field 
through Peierls
substitution

Non-Equilibrium Many-Body Theory

System knows about its 
thermal initial state…

2

been successfully used to describe the melting of a charge
density-wave state24 and the time evolution of electrons
in correlated metals25,26 via tr-ARPES and tr-reflectivity.
We connect the microscopic interaction parameters of
the electron-phonon interaction directly to the observed
timescales, and discuss the extension of the results ob-
tained here to more general models.

II. METHOD

We describe the time-evolution of the system via the
non-equilibrium Keldysh formalism. All Green’s func-
tions have two time arguments, where each time is lo-
cated on the Keldysh contour (see Fig. 1). The sys-
tems starts in equilibrium at a temperature T and time
t = tmin, and evolves until t = tfinal. The time-ordered,

tmin

tmin � i�

tmax

FIG. 1: Keldysh contour used in the description of the double-
time Green’s functions and self-energies.

anti-time-ordered, lesser and greater Green’s functions
are formed by selecting t and t⇥ on appropriate parts of
the contour (see Refs. 1–3,7,8).

The driving fields are included directly into the propa-
gators via the Peierls substitution in the standard double-
time formalism, which leads to the bare non-equilibrium
Green’s function

G0
k(t, t

⇥) =i [nF (�(k))� ⇥c(t, t
⇥)]

⇥ exp

⌥
�i

� t

t0
dt̄ � (k�A(t̄))

�

where nF is the Fermi function at temperature T :
nF (⌅) = 1/(exp(⌅/T ) + 1), t and t⇥ lie on the Keldysh
contour, ⇥c is the contour-ordered Heaviside function,
�(k) is the single-particle dispersion, which we choose
to be a square lattice tight-binding model with nearest-
neighbor and next-nearest-neighbor hoppings Vnn = 0.25
eV and Vnnn = 0.075 eV, and a chemical potential
µ = �0.255 eV.

�(k) = �2Vnn (cos kx + cos ky) + 4Vnnn cos kx cos ky � µ

A(t) is the vector potential at time t, which is related
to the electric field via A(t) = �

´
E(t)dt. Here, we use

the convention that h̄ = c = e = 1, and we work in the
Hamiltonian gauge, i.e. the scalar potential is set to zero.
Energies and frequencies are measured in units of eV.

To illustrate the momentum-dependent quasiparticle
relaxation rates we introduce coupling of electrons to a

non-dispersive optical phonon with energy ⇥. As our
starting point, we use the Holstein model which couples
a band of electrons to a single species of optical phonon:

H =
 

k

�(k)c†kck +
 

q

⇥

⇧
b†qbq +

1

2

⌃

+
 

k,q,i

c†k+qck
⇤
bq + b†�q

⌅

We include the electron-phonon interactions in the
Migdal limit, which is appropriate for weak coupling.
Furthermore, since we are primarily interested in the re-
sponse of the electronic system, we will limit the discus-
sion to just the e⇤ects of the phonons on the electrons,
and will neglect the feedback of the electronic system on
the phonons.
For a non-dispersive optical phonon, the electronic self-

energy is

�(t, t⇥) = ig2
 

k

D0(t, t⇥)G0
k(t, t

⇥)

where g is the electron-phonon coupling strength. The
bare phonon Green’s function D0(t, t⇥) is

D0(t, t⇥) =� i [nB(⇥) + ⇥c(t, t
⇥)] exp (i⇥(t� t⇥))

� i [nB(⇥) + 1� ⇥c(t, t
⇥)] exp (�i⇥(t� t⇥))

where nB(⇥) is the Bose function at temperature T :
nB(⌅) = 1/(exp(⌅/T )� 1). In the following, we will use
various values of the electron-phonon coupling strength
g and the optical phonon frequency ⇥.
With the self-energy above, we solve the Dyson equa-

tion

Gk(t, t
⇥) = G0

k(t, t
⇥) +

�
dt1dt2G

0
k(t, t1)�(t1, t2)Gk(t2, t

⇥)

This can be done by casting the Dyson equation as
a matrix equation. However, for the case of electron-
phonon coupling, better numerical stability can be ob-
tained by expanding the integral through Langreth rules
and solving the equations of motion for the retarded, real-
imaginary, and lesser Green’s functions.4,5 This leads to
a set of Volterra integrodi⇤erential equations that can be
solved via standard numerical integration.6 We find that
the solution of the Dyson equation by integrating the
Volterra equations leads to more stable and inherently
causal algorithms. Some details about number of time
points go here.
The pulse that is of direct interest to pump-probe ex-

periments is, by nature, a propagating light pulse; this
implies an oscillating field without a zero-frequency com-
ponent. We model the pump via an oscillating vector po-
tential along the (11) direction with a Gaussian profile,
where we assume that the field is slowly varying spatially
and thus neglect the spatial dependence:

A(t) = (x̂+ ŷ)
Fmax

⌅p
sin(⌅pt) exp

�
� (t� t0)2

2⇤2

⇥

Gk(!) = G0
k(!) +G0

k(!)⌃(!)Gk(!)



Time-resolved ARPES

Freericks, et al., PRL 102, 136401 (2009); Freericks, et al., Physica Scripta 2015 T165 014012 
(2015); Freericks and Krishnamurthy, Photonics 3 58 (2016)

8

Ak(!, t0) = Im
1

2⇡�2

ˆ
dtdt0G<

k (t, t
0)e�(t�t0)

2/2�2

e�(t0�t0)
2/2�2

ei!(t�t0) (7)

⇡ Im

ˆ
dtdt0G<

k (t, t
0)�(t� t0)�(t

0 � t0)e
i!(t�t0) (8)

⇡ Im G<
k (t0, t0) (9)

⇡ nk(t0) (10)

1 Mahan
2 Jim’s papers
3 Wilkins & Jauho
4 Derivation of langreth rules I found on arXiv
5 Where Michael got the idea
6 Numerical Recipes
7 j davies 88
8 v turkowski 05
9 freericks arpes

10 Avriller
11 Rettig EuFe2As2
12 Felix’ CDW
13 CuO
14 Ehrke Manganites
15 MOKE on Gd(001)

16 phonons in graphite
17 Perfetti 1T-TaS2
18 Wei-Sheng’s paper, to be published
19 S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman.

Electron Emission from Metal Surfaces Exposed to Ultra-
short Laser Pulses. Soviet Physics JETP-USSR 39, 375
(1974).

20 ARPES papers showing fits of electronic distribution to
Fermi fcns

21 P.B. Allen, Phys. Rev. Lett. 59, (1987).
22 T. Holstein, Ann. Phys. 8, 325 (1959); ibid. 8, 343 (1959).
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24 Brian’s/Jim’s papers on FK-dmft
25 Eckstein, Kollar and co-workers
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Lessons learned

1. You can assign a time-dependence to a parameter, but be careful to which one.
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Increased effective temperature looks like decreased coupling
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FIG. 1. Time-resolved spectra on a nearly optimally doped Bi2212. a, Equilibrium (before

pumping, t = �1 ps) and transient (after pumping, t = 1 ps and t = 10 ps) photoelectron intensity

(represented by false color) as a function of energy and momentum measured along a nodal cut,

for a pump fluence of 24 µJcm�2. The bold solid black lines are the momentum distribution curve

(MDC) dispersions at the corresponding delay time. The arrows mark the position of the kink

at ~!0 ⇠70 meV. b, MDC dispersions for di↵erent delay times (�1, 1, and 10 ps). Insets show

comparisons of MDCs before pumping (�1 ps) and after pumping (1 ps) for a series of binding

energies (�0.15, �0.07, and �0.02 eV).
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1. You can assign a time-dependence to a parameter, but be careful to which one.

2. Just because there is scattering, that does not mean there is dynamics.

Lessons learned



Electron-phonon Impurity

arXiv:1708.05725

Although there is a linewidth (relative time), there may not be 
dynamics in average time



1. You can assign a time-dependence to a parameter, but be careful to which 
one.

2. Just because there is scattering, that does not mean there is dynamics.

3. Because the dynamics are determined by a balance in rates, sub-
interactions can switch on and off

Lessons learned



2

where µ is the chemical potential. We have used the
convention that ~ = c = e = 1, which makes inverse
energy the unit of time. We choose Vnn = 0.25 eV,
Vnnnn = 0.075 eV, and µ = �0.255 eV.

a) b) c)

FIG. 1. Self-energies used in this study. a) Impurity self-

energy at the self-consistent Born level. b) Electron-phonon

self-energy at the Migdal level. c) Second order electron-

electron self-energy.

The electron-phonon interaction is treated at the self-
consistent Born level, where the self-energy is given by

⌃C
el�ph(t, t

0) = ig2 GC
loc(t, t

0) DC
0 (t, t

0), (4)

where DC
0 (t, t

0) is the non-interacting phonon
propagator[12], and GC

loc(t, t
0) =

P
k Ḡ

C
k(t, t

0) i.e.
the local Green’s function (see Fig. 1a). The superscript
C denotes that the quantity lives on the two-time
Keldysh contour[13]. Similarly, the impurity scattering
self-energy is

⌃C
imp(t, t

0) = V 2
imp GC

loc(t, t
0) (5)

(see Fig. 1b). The electron-electron interactions are in-
cluded at the level of second order perturbation theory
as

⌃C
el�el(t, t

0) = U2GC
loc(t, t

0)GC
loc(t, t

0)GC
loc(t

0, t) (6)

(see Fig. 1c). Note that both the Hartree and Fock terms
have been absorbed into the chemical potential.

In all three cases, there exists a sum rule for the inter-
actions at this level of perturbation theory. As was dis-
cussed previously[2], the frequency-integrated electron-
phonon interactions obey

⌃el�ph(t, t) = �i(2nB(⌦/T ) + 1). (7)

where nB(⌦) is the Bose occupation of the phonon mode
⌦. The impurity and Coulomb scattering self-energies
can be shown to obey similar sum rules,

⌃imp(t, t) =� iV 2
imp (8)

⌃el�el(t, t) =� iU2n(1� n), (9)

where n is the electron density. These identities are true
at all times, and hold individually even when all three
types of interactions are present.
The equations of motion for the Green’s functions are

solved on the contour by using the methods described in
Ref. 14.

FIG. 2. Pump and probe field profiles

The field is included via the Peierls substitution k(t) =
k � A(t), where the vector potential A(t) is treated in
the Coulomb gauge. We use a pump of the form A(t) =
Amax exp(�t2/2�2) sin(!t) in the (11) direction with ! =
0.5 eV, and � = 40. The field is illustrated in Fig. 2.
Single-particle spectral functions are obtained from the

Green’s functions via

A(k,!, t) = Im

Z
dt1dt2p(t1, t2, t)e

i!(t�t0)G<
k̄
(t1, t2)

(10)

where p(t1, t2, t) is a two-dimensional normalized Gaus-
sian with isotropic width �p = � centered at t1 = t2 = t.
The probe profile is shown in Fig. 2. The shift in momen-
tum due to the Peierls substitution has to be corrected
to obtain gauge-invariant spectra through

k̄ = k+
1

t� t0

Z t

t0
A(t). (11)

RESULTS

Individual cases

Figure 3 shows the time-dependent single particle spec-
tral function A(k,!, t) for times during, and after the
pump, for the electrons coupled to a single Holstein
mode. As previously reported, after excitation the elec-
trons scatter back to lower energies, with slower relax-
ation visible within a phonon frequency of the Fermi en-
ergy due to phase space restrictions.[1–3]

Electron-impurity interactions

Electron-impurity scattering provides the simplest
channel for linewidth broadening —it introduces a self-
energy with the imaginary part simply proportional to

Impurity Electron-phonon Electron-electron
For equilibrium measurements (e.g. line width), these 

processes are equivalent.

Mathiessen’s rule: For weak interactions, scattering rates add.

For population dynamics, this is not true.

1

⌧
=

1

⌧e�imp
+

1

⌧e�ph
+

1

⌧e�e

Inequivalence of Single-Particle and Population Lifetimes in a Cuprate Superconductor
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We study optimally doped Bi-2212 (Tc ¼ 96 K) using femtosecond time- and angle-resolved photo-
electron spectroscopy. Energy-resolved population lifetimes are extracted and compared with single-
particle lifetimes measured by equilibrium photoemission. The population lifetimes deviate from the
single-particle lifetimes in the low excitation limit by 1–2 orders of magnitude. Fundamental considerations
of electron scattering unveil that these two lifetimes are in general distinct, yet for systems with only
electron-phonon scattering they should converge in the low-temperature, low-fluence limit. The qualitative
disparity in our data, even in this limit, suggests that scattering channels beyond electron-phonon
interactions play a significant role in the electron dynamics of cuprate superconductors.

DOI: 10.1103/PhysRevLett.114.247001 PACS numbers: 74.72.-h, 71.38.-k, 74.25.Jb, 78.47.J-

Electron lifetime is a central quantity in condensedmatter
theories [1]. It determines macroscopic properties such as
electrical and thermal conductivities and encodes micro-
scopic scattering mechanisms [1–3]. Revealing dominant
scattering channels in copper-oxide high-temperature super-
conductors (cuprates) will be key to understanding the
complex interplay of orders underlying their phase diagram.
Electron lifetimes in cuprates have been studied in both

the energy and time domains. In the energy domain, angle-
resolved photoelectron spectroscopy (ARPES) [4–9] and
optical spectroscopy [10,11] access the imaginary part of
electron self-energy ImΣðϵÞ, which is connected to the
single-particle lifetime τsðϵÞ via ImΣðϵÞ ¼ ℏ=½2τsðϵÞ%. This
lifetime describes the relaxation process of an excited
single particle with energy ϵ. On the other hand, time-
resolved reflectivity [12–14] measures a lifetime τp asso-
ciated with the decay of a photoexcited electron population.
Systematically comparing τsðϵÞ and τpðϵÞmay provide new
insights into the underlying scattering mechanisms. To
understand the relation between these two lifetimes, one
needs to obtain the energy-resolved population lifetime
τpðϵÞ and directly compare with τsðϵÞ. Femtosecond time-
resolved ARPES (trARPES) provides this capability
[15–24]. Several trARPES studies have investigated the
relaxation of photoexcited electrons in cuprates [16–19].
Yet, so far, no energy-resolved lifetimes have been
extracted from the population dynamics in cuprates.
In this Letter, we employ trARPES and ARPES with

high-energy resolution to perform a detailed comparison

between τsðϵÞ and τpðϵÞ in optimally doped
Bi2Sr2Ca0.92Y0.08Cu2O8þδ (OP Bi-2212, Tc ¼ 96 K) along
the nodal direction [25]. At 20 K, τpðϵÞ extracted from
trARPES decreases with increasing excitation densities
below a characteristic energy of ∼60 meV, yet the trend is
reversed above this energy. At first glance, this character-
istic energy seems to agree with the mode energies as
identified by ARPES measurements of τsðϵÞ, but the
absolute values for τsðϵÞ and τpðϵÞ are different by 1–2
orders of magnitude. This disparity also existed in studies
on graphite and graphene [26–28]. We demonstrate that
τsðϵÞ and τpðϵÞ reflect different aspects of electron scatter-
ing phenomena and that processes beyond electron-phonon
interactions contribute to the disparity. The understanding
of this disparity is of importance to future trARPES
experiments on all materials.
Our trARPES setup is based on a Ti∶sapphire regener-

ative amplifier operating at a repetition rate of 800 kHz.
Infrared pump pulses with 1.5 eV photon energy excite the
sample; ultraviolet probe pulses with 6 eV photon energy
generate photoelectrons which are collected by a Scienta
R4000 analyzer. High-quality single crystals of OP Bi-
2212 [25] are cleaved in ultrahigh vacuum with a pressure
<7 × 10−11 torr. Typical energy, momentum, and time
resolutions for the trARPES setup are 22 meV,
0.001 Å−1, and 100 fs, respectively. Our ARPES meas-
urement is performed at Beam line 5-4 of the Stanford
Synchrotron Radiation Lightsource. Synchrotron light with
7 eV photon energy generates photoelectrons which are
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Individual subsets can (and do) cancel out, leading to effective 
disappearance of the interaction in dynamics.
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All interactions are not equal



Equilibrium: quasiparticle Non-equilibrium: population

The rate of relaxation is not 
precisely the self-energy.
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All interactions are not equal

Individual subsets can (and do) cancel out, leading to effective 
disappearance of the interaction in dynamics.
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Combining electron-electron and electron-phonon scattering

g2 = 0.02

Step in lifetimes 
remains visible

Competition 
between e-p and e-
e scattering

Matthiessen’s rule, “Scattering rates add for small interaction 
strength” does not hold here.

Nature Communications 7, 13761 (2016)



1. You can assign a time-dependence to a parameter, but be careful to which 
one.

2. Just because there is scattering, that does not mean there is dynamics.

3. Because the dynamics are determined by a balance in rates, sub-
interactions can switch on and off

Lessons learned



Outline

• Photoemission from excitons and coherences
– Seeing excitons with time-resolved ARPES
– Exciton interference
– Photoemission from coherences inside solids

• Theoretical perspective on non-equilibrium spectroscopy
– Correlation functions – What do we measure?
– Non-equilibrium correlation functions – What’s different?
– Non-equilibrium many-body theory
– Lessons learned

Phys. Rev. B 97, 235310 (2018) 
Phys. Rev. B 99, 125303 (2019) 
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