NC STATE

Non-equilibrium spectroscopy of matter: Excitons and correlation functions

Alexander. F. Kemper

North Carolina State University Department of Physics
https://go.ncsu.edu/kemper-lab

Yale Solid State \& Optics Seminar
December 14, 2022

Phys. Rev. B 97, 235310 (2018)
Phys. Rev. B 99, 125303 (2019) arXiv:2005.08978
J. Elec. Spec. Rel. Phenom. 251, 147104 (2021)

NC STATE

Outline

- Photoemission from excitons and coherences
- Seeing excitons with time-resolved ARPES
- Exciton interference
- Photoemission from coherences inside solids
- Theoretical perspective on non-equilibrium spectroscopy
- Correlation functions - What do we measure?
- Non-equilibrium correlation functions - What's different?
- Non-equilibrium many-body theory
- Lessons learned

NC STATE

Outline

- Photoemission from excitons and coherences
- Seeing excitons with time-resolved ARPES
- Exciton interference
- Photoemission from coherences inside solids
- Theoretical perspective on non-equilibrium spectroscopy
- Correlation functions - What do we measure?
- Non-equilibrium correlation functions - What's different?
- Non-equilibrium many-body theory
- Lessons learned

Excitons

Kazimierczuk, T, et al. Nature 514.7522 (2014): 343.
MoS_{2}

Mak, K. et al. Nature
Materials, 12(3), 207-11.

Excitons

Phys. Rev. B 97, 235310 (2018)

Non-equilibrium excitons

Given a macroscopic occupation of excitons, what should you see in electron spectroscopy?

Phys. Rev. B 97, 235310 (2018)

NC STATE

ARPES from Excitons

Bulk MoSe_{2}

Resonant (1.58 eV excitation)
Non-resonant (3.16 eV excitation)

J. Buss et al. CLEO 2017

NC STATE ARPES from Excitons

Momentum-Resolved Observation of Exciton Formation Dynamics in Monolayer WS ${ }_{2}$
Robert Wallauer,* Raul Perea-Causin, Lasse Münster, Sarah Zajusch, Samuel Brem, Jens Güdde, Katsumi Tanimura, Kai-Qiang Lin, Rupert Huber, Ermin Malic,* and Ulrich Höfer

Cite This: Nano Lett. 2021, 21, 5867-5873
© Read Online

Directly visualizing the momentum-forbidden dark excitons and their dynamics in atomically thin semiconductors
 NICHOLAS S. CHAN (D. ARKA KARMAKAR, LII KESHAV M. DANI (ㄱ) $\boldsymbol{+ 5}$ authors Authors info \& Affiliations

SCIENCE - 4 Dec $2020 \cdot$ Vol 370, Issue 6521 • pp. 1199-1204 - Dol: 10.1126/science.aba 1029

ARPES Theory

First-principles approach to excitons in time-resolved and angle-resolved photoemission spectra
E. Perfetto, ${ }^{1,2}$ D. Sangalli, ${ }^{2}$ A. Marini, ${ }^{2}$ and G. Stefanucci ${ }^{1,3}$

FIG. 7. Lesser Green's function $-i G_{c c, k}^{<}(\omega)$ (in arbitrary units) for different momenta k of the conduction electron. The (red) curve in the background is the integrated quantity $-i \int d k G_{c c, k}^{<}(\omega)$.

Also:
Hiromasa Ohnishi, Norikazu Tomita, and Keiichiro Nasu, Int.J. Mod. Phys. B https://doi.org/10.1142/S0217979218500947

ARPES Theory

Equilibrium $\quad H\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle$
Time evolution Operator $U\left(t, t_{0}\right)=T_{t} \exp \left(-\frac{i}{\hbar} \int_{t_{0}}^{t} d t_{1} H_{\text {pump }}\left(t_{1}\right)\right)$

Assume a steady-state distribution of excitons

With Pump + Probe $\quad H \rightarrow H_{\text {pump }}(t)+H_{\text {probe }}(t)$
Time evolution Operator $\bar{U}\left(t, t_{0}\right)=T_{t} \exp \left(-\frac{i}{\hbar} \int_{t_{0}}^{t} d t_{1}\left[H_{\text {pump }}\left(t_{1}\right)+H_{\text {probe }}\left(t_{1}\right)\right]\right)$
Linearize this assuming weak probe
Probability to find photoelectron with momenta $\boldsymbol{k}=\lim _{t \rightarrow \infty} \frac{k^{2} d k d \Omega_{k}}{(2 \pi)^{3}} P(t) ; \quad P(t)=\sum_{n, m} \rho_{n}\left|\left\langle\Psi_{m} ; \boldsymbol{k} \mid \Psi_{n}^{F}(t)\right\rangle\right|^{2}$
Probe photoemits an electron

$$
H_{\text {probe }}(t)=s(t) e^{-i \omega_{0} t} M_{f c}\left(\boldsymbol{k}, \boldsymbol{k}^{\prime}\right) f^{\dagger}(\boldsymbol{k}) b\left(\boldsymbol{k}^{\prime}-\mathbf{w}\right)
$$

NC STATE

ARPES Theory

Assuming Gaussian probe pulse with temporal width σ :

Valence band dispersion!

Indirect gap nature shows up through momentum
conservation and \mathbf{w} in the expression

Results: Infinitely Sharp Exciton ρ

With only $\mathrm{Q}=0$ excitons:
ARPES shows

- Replica of the valence band dispersion
- Near conduction band
- Offset by exciton E_{b}

Phys. Rev. B 97, 235310 (2018)

Results

$P\left(t_{d}\right) \propto|M|^{2} \sum_{\lambda, \mathbf{Q}} \rho_{\lambda, \mathbf{Q}}\left|\phi_{\lambda}\left(\mathbf{k}^{\prime}-\mathbf{w}-\alpha \mathbf{Q}\right)\right|^{2} \times \exp \left(-\sigma^{2}\left[-\omega+E_{\lambda, \mathbf{Q}}+\epsilon_{v, \mathbf{k}^{\prime}-\mathbf{w}-\mathbf{Q}}\right]^{2}\right)$ §Exciton Distribution

Phys. Rev. B 97, 235310 (2018)

NC STATE

Phys. Rev. B 97, 235310 (2018)

NC STATE

Outline

- Photoemission from excitons and coherences
- Seeing excitons with time-resolved ARPES
- Exciton interference
- Photoemission from coherences inside solids
- Theoretical perspective on non-equilibrium spectroscopy
- Correlation functions - What do we measure?
- Non-equilibrium correlation functions - What's different?
- Non-equilibrium many-body theory
- Lessons learned

Exciton coherences

Solid State Communications 112 (1999) 597-600	solid state
communications	

Exciton beats in GaAs quantum wells: bosonic representation and collective effects
J. Fernández-Rossier ${ }^{\text {a,* }}$, C. Tejedor ${ }^{\text {a }}$, R. Merlin ${ }^{\text {b }}$
${ }^{a}$ Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain ${ }^{\mathrm{b}}$ Department of Physics, The University of Michigan, Ann Arbor, MI 48109-1120, USA

Exciton coherences

Coherent state formalism

$$
\begin{aligned}
|\Psi(t)\rangle & =N e^{-i H_{0} t} e^{i K_{1} A_{1}^{\dagger}} e^{i K_{2} A_{2}^{\dagger}}|0\rangle \\
& =N \sum_{n_{1}, n_{2}} \frac{\left(i \bar{K}_{1}(t)\right)^{n_{1}}}{\sqrt{n_{1}!}} \frac{\left(i \bar{K}_{2}(t)\right)^{n_{2}}}{\sqrt{n_{2}!}}\left|n_{1} ; n_{2}\right\rangle \\
& =N e^{i \bar{K}_{1}(t) A_{1}^{\dagger}} e^{i \bar{K}_{2}(t) A_{2}^{\dagger}}|0\rangle
\end{aligned}
$$

Phys. Rev. B 99, 125303 (2019)

Exciton coherences

Coherent state formalism

$$
\begin{aligned}
|\Psi(t)\rangle & =N e^{-i H_{0} t} e^{i K_{1} A_{1}^{\dagger}} e^{i K_{2} A_{2}^{\dagger}}|0\rangle \\
& =N \sum_{n_{1}, n_{2}} \frac{\left(i \bar{K}_{1}(t)\right)^{n_{1}}}{\sqrt{n_{1}!}} \frac{\left(i \bar{K}_{2}(t)\right)^{n_{2}}}{\sqrt{n_{2}!}}\left|n_{1} ; n_{2}\right\rangle \\
& =N e^{\bar{K}_{1}(t) A_{1}^{\dagger}} e^{i \bar{K}_{2}(t) A_{2}^{\dagger}}|0\rangle
\end{aligned}
$$

Phys. Rev. B 99, 125303 (2019)

NC STATE

Outline

- Photoemission from excitons and coherences
- Seeing excitons with time-resolved ARPES
- Exciton interference
- Photoemission from coherences inside solids
- Theoretical perspective on non-equilibrium spectroscopy
- Correlation functions - What do we measure?
- Non-equilibrium correlation functions - What's different?
- Non-equilibrium many-body theory
- Lessons learned

NC STATE

REPORTS

Time-Resolved Coherent Photoelectron

 Spectroscopy of Quantized Electronic States on Metal SurfacesU. Höfer,* I. L. Shumay, Ch. Reuß, U. Thomann, W. Wallauer, Th. Fauster

Fig. 3. Quantum beats observed after the coherent excitation of imagepotential states with quantum numbers $n=4,5$, and $6\left(E_{\mathrm{B}} \simeq 40 \mathrm{meV}\right)$. (A) The thick curve corresponds to the measured 2PPE signal as function of pump-probe delay. The thin line is the result of the density matrix calculation for the two-photon excitation depicted schematically on the right side of the figure. The dashed line shows the envelope $\mathscr{E}_{a}(t)$ of the exciting UV pulse. The Fourier transform was obtained after subtraction of a smooth exponential decay from the measured data and directly gives the beating frequencies $v_{4,5}=$ $\left(E_{5}-E_{4}\right) / h$ and $v_{5,6}=\left(E_{6}-E_{5}\right) / h$ between the excited states. (B) Relative population of the individual levels resulting from the calculation and corresponding decay times τ_{n}. The coherent peaks visible for $n=4$ and $n=6$ are caused by off-resonant excitation of these levels from the continuum of initial states in the metal.

Solids (Image Potential States): Petek, Weinelt

Atoms, Molecules \& Quantum

 Wells:Long storied history of coherence-related studies with both optics \& photoemission

NC STATE

Q: Can we observe coherences inside the material?

(a)

(b)

(c)
(d)

(e)

Dai, PRL 2012 - Na vapor

Stone, Science 2009 - GaAs OW

Wang, PRL 2019 - AlGaAs

NC STATE

Wavefunctions (Höfer)

$$
\begin{align*}
I(t) & \propto\left|a_{n}(t) \Psi_{n}(t)+a_{n+1}(t) \Psi_{n+1}(t)\right|^{2} \tag{2a}\\
& \propto a_{n}^{2}+a_{n+1}^{2}+2 a_{n} a_{n+1} \cos \left(\omega_{n, n+1} t\right) \tag{2b}
\end{align*}
$$

Fig. 3. Quantum beats observed after the coherent excitation of imagepotential states with quantum numbers $n=4,5$, and $6\left(E_{\mathrm{B}} \simeq 40 \mathrm{meV}\right)$. (A) The thick curve corresponds to the measured 2PPE signal as function of pump-probe delay. The thin
line is the result of the density matrix line is the result of the density matrix calculation for the two-photon excitation depicted schematicaly on the line shows the envelope $\mathscr{E}(t)$ of the exciting UV pulse The Fourier transform was obtained after subtraction of a smooth exponential decay from the measured data and directly gives the beating frequencies $v_{1}=$ $\left(E_{5}-E_{4}\right) / h$ and $v_{5}=\left(E_{0}-E_{5}\right) / h$ between the excited states. (B) Relative population of the individual levels resulting from the calculation and
 corresponding decay times τ_{n}. The coherent peaks visible for $n=4$ and $n=6$ excitation of these levels from the continuum of initial states in the metal.

Wavefunctions (Höfer)

$$
\begin{align*}
I(t) & \propto\left|a_{n}(t) \Psi_{n}(t)+a_{n+1}(t) \Psi_{n+1}(t)\right|^{2} \tag{2a}\\
& \propto a_{n}^{2}+a_{n+1}^{2}+2 a_{n} a_{n+1} \cos \left(\omega_{n, n+1} t\right) \tag{2b}
\end{align*}
$$

Green's functions (Freericks PRL 2009)

$$
\begin{gathered}
G_{\mathbf{k}}^{<}\left(t, t^{\prime}\right)=i\left\langle\hat{c}_{\mathbf{k}}^{\dagger}\left(t^{\prime}\right) \hat{c}_{\mathbf{k}}(t)\right\rangle \\
\mathcal{I}\left(\mathbf{k}, \omega, t_{0}\right)=-i \iint d t d t^{\prime} s(t) s\left(t^{\prime}\right) e^{i \omega\left(t-t^{\prime}\right)} G_{\mathbf{k}}^{<}\left(t, t^{\prime}\right) .
\end{gathered}
$$

Density Matrix (Mukamel,Tokmakoff)

$$
G_{\mathbf{k}}^{<}\left(t, t^{\prime}\right)=i\left\langle\hat{c}_{\mathbf{k}}^{\dagger}\left(t^{\prime}\right) \hat{c}_{\mathbf{k}}(t)\right\rangle . \quad G_{\mathbf{k}}^{<}\left(t, t^{\prime}\right)=i \operatorname{Tr}\left\{\hat{c}_{\mathbf{k}}^{\dagger}\left(t^{\prime}\right) \hat{c}_{\mathbf{k}}(t) \rho\right\}
$$

Two-sided Feynman pathway diagrams for photoemission \& ARPES

$$
\begin{aligned}
\varepsilon_{\text {coherence }} & =\frac{1}{2}\left(\varepsilon_{0}+\varepsilon_{1}\right) \\
\mathcal{I}_{\text {coherence }}(t) & \sim \cos \left(\left(\varepsilon_{0}-\varepsilon_{1}\right) t\right)
\end{aligned}
$$

NC STATE Photoemission from coherences inside solids

arXiv:2005.08978

$\begin{array}{l\|l} \hat{\alpha}(t)_{\zeta} & \begin{array}{l} \|0\rangle\langle 0\| \\ \|0\rangle\langle a\| \\ \|a\rangle\langle a\| \end{array} \end{array}$	$\begin{array}{\|ll\|l} \hat{\alpha}\left(t^{\prime}\right) & & \\ & \hat{\alpha}(t) & \begin{array}{l} \|0\rangle\langle 0\| \\ \\ \end{array} \\ & & \begin{array}{l} \|0\rangle\langle b\| \\ \|a\rangle\langle b\| \end{array} \end{array}$	$\underbrace{\hat{\alpha}\left(t^{\prime}\right)} \begin{array}{ll\|l} & \\ & \hat{\alpha}(t) & \begin{array}{l} \|0\rangle(0 \mid \\ \\ \end{array} \\ & & \\ \|0\rangle\langle a\| \\ \|b\rangle\langle a\| \end{array}$	$\underbrace{\hat{\alpha}\left(t^{\prime}\right)} \begin{array}{ll\|l} \\ & \hat{\alpha}(t) & \begin{array}{l} \|0\rangle\langle 0\| \\ \\ \end{array} \\ & & 0\rangle\langle b\| \\ \|b\rangle\langle b\| \end{array}$	$\underbrace{\hat{\alpha}\left(t^{\prime}\right)}$
$t=t^{\prime}=0$	$t=t^{\prime}=0$	$t=t^{\prime}=0$	$t=t^{\prime}=0$	

Populations
arXiv:2005.08978

NC STATE

Theoretical approaches to time-resolved ARPES of coherences

NC STATE

To conclude Part 1...

- Photoemission from excitons

Phys. Rev. B 97, 235310 (2018)

- Exciton interference \& coherence

Phys. Rev. B 99, 125303 (2019)

- Photoemission from coherences inside solids
arXiv:2005.08978

NC STATE

Outline

- Photoemission from excitons and coherences
- Seeing excitons with time-resolved ARPES
- Exciton interference
- Photoemission from coherences inside solids
- Theoretical perspective on non-equilibrium spectroscopy
- Correlation functions - What do we measure?
- Non-equilibrium correlation functions - What's different?
- Non-equilibrium many-body theory
- Lessons learned

NC STATE

Journal of Electron Spectroscopy and Related Phenomena 251 (2021) 147104

Contents lists available at ScienceDirect
Journal of Electron Spectroscopy and Related Phenomena journal homepage: www.elsevier.com/locate/elspec

What do the two times in two-time correlation functions mean for interpreting tr-ARPES?

Correlation functions

$$
\left\langle A(r, t) B\left(r^{\prime}, t^{\prime}\right)\right\rangle
$$

Given some (observable) operator B at (r^{\prime}, t^{\prime}), what is the likelihood of some (observable) operator A at (r, t) ?

$$
A(r, t) \longrightarrow B\left(r^{\prime}, t^{\prime}\right)
$$

Correlation functions

Conductivity

$$
\left\langle j(r, t) j\left(r^{\prime}, t^{\prime}\right)\right\rangle
$$

Single-particle spectra (ARPES)

$$
\left\langle c(r, t) c^{\dagger}\left(r^{\prime}, t^{\prime}\right)\right\rangle
$$

$$
A(r, t) \longrightarrow B\left(r^{\prime}, t^{\prime}\right)
$$

Spin-resolved neutron scattering

$$
\sigma_{\alpha \beta}^{x, y, z}\left\langle S_{\alpha}(r, t) S_{\beta}\left(r^{\prime}, t^{\prime}\right)\right\rangle
$$

Correlation functions

$$
\left\langle A(r, t) B\left(r^{\prime}, t^{\prime}\right)\right\rangle
$$

Time-translation invariance:

$$
\left\langle A\left(r, t_{\text {relative }}\right) B\left(r^{\prime}, 0\right)\right\rangle
$$

$$
A(r, t) \longrightarrow B\left(r^{\prime}, t^{\prime}\right)
$$

$\chi(\omega)=\int_{-\infty}^{\infty}\left\langle A\left(r, t_{\text {relative }}\right) B\left(r^{\prime}, 0\right)\right\rangle e^{i \omega t_{\text {relative }}} d t_{\text {relative }}$

Correlation functions - an example: ARPES

$$
G^{<}\left(r, t ; r^{\prime}, t^{\prime}\right)=i\left\langle c^{\dagger}\left(r^{\prime}, t^{\prime}\right) c(r, t)\right\rangle / \mathcal{Z}
$$

(Plus a few steps)

Damascelli, Rev. Mod. Phys. 75, 473 (2003)
Freericks, et al., PRL 102, 136401 (2009)

NC STATE

Correlation functions - an example: ARPES

$$
G^{<}\left(r, t ; r^{\prime}, t^{\prime}\right)=i\left\langle c^{\dagger}\left(r^{\prime}, t^{\prime}\right) c(r, t)\right\rangle / \mathcal{Z}
$$

Given that I create a single particle excitation at (r, t), what is the probability that I may find it at $\left(r^{\prime}, t^{\prime}\right)$?

Space-translation invariance: go into Bloch basis with quasi-momentum

$$
G_{k}^{<}\left(t, t^{\prime}\right)=i\left\langle c_{k}^{\dagger}\left(t^{\prime}\right) c_{k}(t)\right\rangle / \mathcal{Z}
$$

nc state Correlation functions - an example: ARPES

$$
\begin{aligned}
G_{k}^{<}\left(t, t^{\prime}\right) & =i\left\langle c_{k}^{\dagger}\left(t^{\prime}\right) c_{k}(t)\right\rangle / \mathcal{Z} \\
& =-i \sum_{\gamma} \rho_{\gamma}\left\langle\Psi_{\gamma}\right| c_{k}^{\dagger}\left(t^{\prime}\right) c_{k}(t)\left|\Psi_{\gamma}\right\rangle
\end{aligned}
$$

Density matrix Eigenstates

Time evolution operators

nc state Correlation functions - an example: ARPES

nc State Correlation functions - an example: ARPES

$$
\left\langle\Psi_{\gamma}\right| c_{k}^{\dagger}\left(t^{\prime}\right) c_{k}(t)\left|\Psi_{\gamma}\right\rangle=\langle\Psi_{\gamma} \underbrace{\mid U\left(t_{0}, t^{\prime}\right) c_{k}^{\dagger}}_{\left|\Phi_{1}\right\rangle^{\dagger}} \underbrace{U\left(t^{\prime}, t\right) c_{k} U\left(t, t_{0}\right)}_{\left|\Phi_{2}\right\rangle} \mid \Psi_{\gamma}\rangle
$$

When there is no explicit time dependence in the Hamiltonian,

$$
=\left\langle\Psi_{\gamma}\right| e^{i \mathcal{H}\left(t^{\prime}-t_{0}\right)} c_{k}^{\dagger} e^{-i \mathcal{H}\left(t^{\prime}-t\right)} c_{k} e^{-i \mathcal{H}\left(t-t_{0}\right)}\left|\Psi_{\gamma}\right\rangle
$$

NC STATE
 Correlation functions - an example: ARPES

Assuming the single-particle excitation is an eigenstate,

$$
G^{<}\left(t, t^{\prime}\right)=i f\left(\xi_{k}\right) e^{-i \xi_{k}\left(t-t^{\prime}\right)}
$$

nc state Correlation functions - an example: ARPES

$$
G^{<}\left(t, t^{\prime}\right)=i f\left(\xi_{k}\right) e^{-i \xi_{k}\left(t-t^{\prime}\right)}
$$

nc state Correlation functions - an example: ARPES

$$
\begin{aligned}
G^{<}(\omega) & =\int_{-\infty}^{\infty} d\left(t-t^{\prime}\right)\left[i f\left(\xi_{k}\right) e^{-i \xi_{k}\left(t-t^{\prime}\right)}\right] \\
& =2 \pi i f\left(\xi_{k}\right) \delta\left(\omega-\xi_{k}\right)
\end{aligned}
$$

Correlation functions - an example: ARPES

Okay, but most systems are interacting?!

NC STATE
 Correlation functions - an example: ARPES

Recall that the ARPES correlation function involved

$$
\left\langle\Psi_{\gamma}\right| \underbrace{\mid U\left(t_{0}, t^{\prime}\right) c_{k}^{\dagger}}_{\left|\Phi_{1}\right\rangle^{\dagger}} \underbrace{U\left(t^{\prime}, t\right) c_{k} U\left(t, t_{0}\right)}_{\left|\Phi_{2}\right\rangle}\left|\Psi_{\gamma}\right\rangle
$$

Since the single-particle basis is not the eigenbasis, the bottom situation spreads out and we may expect the overlap to decay as $\left|t-t^{\prime}\right| \rightarrow \infty$

Correlation functions - an example: ARPES

$$
G^{<}\left(t, t^{\prime}\right)=i f\left(\xi_{k}\right) e^{-i \xi_{k}\left(t-t^{\prime}\right)} e^{-\Gamma\left|t-t^{\prime}\right|}
$$

NC STATE
 Correlation functions - an example: ARPES

The energy dependence of $\Sigma(\omega)$ is characteristic for a few different processes.

nc state Correlation functions - an example: ARPES

nc state Correlation functions - an example: ARPES

$$
G^{<}(\omega, k)=-2 i f(\omega) \operatorname{Im} \frac{1}{\omega-\xi_{k}-\Sigma(\omega, k)}
$$

To first order, the self-energies are additive (known as Matthiessen's rule):
$\Sigma=\Sigma_{\text {phonon }}+\Sigma_{\text {Coulomb }}+\Sigma_{\text {impurity }}$

Going back to the time domain, the correlation function decay time is related to the self-energy via

$$
1 / \tau=-2 \operatorname{Im} \Sigma
$$

Correlation functions - an example: ARPES

- Depend on time differences (relative times)
- The correlation functions decay due to spreading in state space through interactions
- The self-energy encodes the interactions and gives rise to the correlation function decay (or line width in frequency)

$$
\left\langle A\left(r, t_{\text {relative }}\right) B\left(r^{\prime}, 0\right)\right\rangle
$$

NC STATE

Outline

- Photoemission from excitons and coherences
- Seeing excitons with time-resolved ARPES
- Exciton interference
- Photoemission from coherences inside solids
- Theoretical perspective on non-equilibrium spectroscopy
- Correlation functions - What do we measure?
- Non-equilibrium correlation functions - What's different?
- Non-equilibrium many-body theory
- Lessons learned

nc state \quad Non-equilibrium Correlation functions

$$
\left\langle A(r, t) B\left(r^{\prime}, t^{\prime}\right)\right\rangle
$$

Given some (observable) operator B at (r^{\prime}, t^{\prime}), what is the likelihood of some (observable) operator A at (r, t) ?

We can no longer just work with relative time because time-translationinvariance is broken.

Non-equilibrium Correlation functions

$$
\left\langle A(r, t) B\left(r^{\prime}, t^{\prime}\right)\right\rangle
$$

> Average
> (measurement) time $t_{\text {ave }}=\frac{1}{2}\left(t+t^{\prime}\right)$

Relative time $t_{\text {rel }}=t-t^{\prime}$

$$
\left\langle A\left(r, t_{\text {ave }}+t_{\text {rel }} / 2\right) B\left(r^{\prime}, t_{\text {ave }}-t_{\text {rel }} / 2\right)\right\rangle
$$

nc state \quad Non-equilibrium Correlation functions

$$
\left\langle A(r, t) B\left(r^{\prime}, t^{\prime}\right)\right\rangle
$$

Average (measurement) $t_{\text {ave }}=\frac{1}{2}\left(t+t^{\prime}\right)$

Relative time
$t_{\mathrm{rel}}=t-t^{\prime}$

1. In equilibrium, there is no dynamics along the average time direction. This steady state is achieved through a balance of scattering rates.
2. Out of equilibrium, the dynamics along average time need not be the same as those along relative time in general, they are not.

How do we make some progress?

Non-equilibrium Correlation functions

- Suppose that

1. We are making measurements long after the pump
2. The average (measurement) time-dependence is slow compared to the time dependence in $\mathrm{t}_{\text {rel }}$ (which we called Γ).

- Then we may (carefully) map the time dependence onto the parameters of the correlation
 function

NC STATE Non-equilibrium Correlation functions

- Suppose that

1. We are making measurements long after the pump
2. The average (measurement) timedependence is slow compared to the time dependence in $\mathrm{t}_{\text {rel }}$ (which we called Γ).

- Then we may (carefully) map the time dependence onto the parameters of the correlation function and Fourier transform along $\mathrm{t}_{\text {rel }}$

Non-equilibrium Correlation functions

- Example parameters that are modeled to change with average time:
- System temperature
- Drude scattering rates
- Coupling constants
- Order parameters (e.g. superconducting gaps)

G. Coslovich, Nature Communications 4, 2643 (2013).

NC STATE

$$
\text { PHYSICAL REVIEW X 7, } 041013 \text { (2017) }
$$

Ultrafast Gap Dynamics and Electronic Interactions in a Photoexcited Cuprate Superconductor

S. Parham, ${ }^{1}$ H. Li, ${ }^{1}$ T. J. Nummy, ${ }^{1}$ J. A. Waugh, ${ }^{1}$ X. Q. Zhou, ${ }^{1}$ J. Griffith, ${ }^{1}$ J. Schneeloch, ${ }^{2}$ R. D. Zhong, ${ }^{2}$ G. D. Gu, ${ }^{2}$ and D.S. Dessau ${ }^{1,3}$

nc state \quad Non-equilibrium Correlation functions

Changing parameters as a function of time

PROS:

- Easy to understand and communicate
- We can rely on our equilibrium intuition and knowledge

CONS:

- We only rely on our equilibrium intuition and knowledge
- Difficult to tell when it's appropriate and when it isn't

NC STATE

Outline

- Photoemission from excitons and coherences
- Seeing excitons with time-resolved ARPES
- Exciton interference
- Photoemission from coherences inside solids
- Theoretical perspective on non-equilibrium spectroscopy
- Correlation functions - What do we measure?
- Non-equilibrium correlation functions - What's different?
- Non-equilibrium many-body theory
- Lessons learned

NG STATE \quad Non-Equilibrium Many-Body Theory

NC STATE

Time-resolved ARPES

Image source: FHI Berlin

$$
A_{\mathbf{k}}\left(\omega, t_{0}\right)=\operatorname{Im} \frac{1}{2 \pi \sigma^{2}} \int d t d t G_{\mathbf{k}}^{<}\left(t, t^{\prime}\right) e^{-\left(t-t_{0}\right)^{2} / 2 \sigma^{2}} e^{-\left(t^{\prime}-t_{0}\right)^{2} / 2 \sigma^{2}} e^{i \omega\left(t-t^{\prime}\right)}
$$

Freericks, et al., PRL 102, 136401 (2009); Freericks, et al., Physica Scripta 2015 T1 65014012 (2015); Freericks and Krishnamurthy, Photonics 35 (2016)

Electron-boson coupling

Phys. Rev. X 3, 041033

Lessons learned

1. You can assign a time-dependence to a parameter, but be careful to which one.

NC STATE

Increased effective temperature looks like decreased coupling

Momentum (\AA^{-1})

Lessons learned

1. You can assign a time-dependence to a parameter, but be careful to which one.
2. Just because there is scattering, that does not mean there is dynamics.

NC STATE

Although there is a linewidth (relative time), there may not be dynamics in average time

Lessons learned

1. You can assign a time-dependence to a parameter, but be careful to which one.
2. Just because there is scattering, that does not mean there is dynamics.
3. Because the dynamics are determined by a balance in rates, subinteractions can switch on and off

All interactions are not equal

a)

b)

PRL 114, 247001 (2015)
PHYSICAL REVIEW LETTERS

Inequivalence of Single-Particle and Population Lifetimes in a Cuprate Superconductor
S.-L. Yang, ${ }^{1,2}$ J. A. Sobota, ${ }^{1,3}$ D. Leuenberger, ${ }^{1,2}$ Y. He, ${ }^{1,2}$ M. Hashimoto, ${ }^{4}$ D. H. Lu, ${ }^{4}$ H. Eisaki, ${ }^{5}$ P. S. Kirchmann, ${ }^{1, *}$ and Z.-X. Shen ${ }^{1,2, \dagger}$

For equilibrium measurements (e.g. line width), these processes are equivalent.

Mathiessen's rule: For weak interactions, scattering rates add.

$$
\frac{1}{\tau}=\frac{1}{\tau_{e-i m p}}+\frac{1}{\tau_{e-p h}}+\frac{1}{\tau_{e-e}}
$$

For population dynamics, this is not true.

All interactions are not equal

$$
\begin{aligned}
\frac{d n_{\mathbf{k}}\left(t_{\mathrm{ave}}\right)}{d t_{\mathrm{ave}}} & =\int_{-\infty}^{\infty} d \omega 2 i \operatorname{Im} \Sigma_{i m p}^{R}\left(t_{\mathrm{ave}}, \omega\right) G_{\mathbf{k}}^{<}\left(t_{\mathrm{ave}}, \omega\right)-\int_{-\infty}^{\infty} d \omega 2 i \operatorname{Im} G_{\mathbf{k}}^{R}\left(t_{\mathrm{ave}}, \omega\right) \Sigma_{i m p}^{<}\left(t_{\mathrm{ave}}, \omega\right) \\
& +\int_{-\infty}^{\infty} d \omega 2 i \operatorname{Im} \Sigma_{\text {phonon }}^{R}\left(t_{\mathrm{ave}}, \omega\right) G_{\mathbf{k}}^{<}\left(t_{\mathrm{ave}}, \omega\right)-\int_{-\infty}^{\infty} d \omega 2 i \operatorname{Im} G_{\mathbf{k}}^{R}\left(t_{\mathrm{ave}}, \omega\right) \Sigma_{\text {phonon }}^{<}\left(t_{\mathrm{ave}}, \omega\right) \\
& +\int_{-\infty}^{\infty} d \omega 2 i \operatorname{Im} \Sigma_{\text {el-el }}^{R}\left(t_{\mathrm{ave}}, \omega\right) G_{\mathbf{k}}^{<}\left(t_{\mathrm{ave}}, \omega\right)-\int_{-\infty}^{\infty} d \omega 2 i \operatorname{Im} G_{\mathbf{k}}^{R}\left(t_{\mathrm{ave}}, \omega\right) \Sigma_{\text {el-el }}^{<}\left(t_{\mathrm{ave}}, \omega\right)
\end{aligned}
$$

Individual subsets can (and do) cancel out, leading to effective disappearance of the interaction in dynamics.

$$
\Sigma_{\mathrm{imp}} \propto G_{\mathbf{k}}
$$

Equilibrium: quasiparticle

The rate of relaxation is not precisely the self-energy.

All interactions are not equal

$$
\begin{aligned}
\frac{d n_{\mathbf{k}}\left(t_{\mathrm{ave}}\right)}{d t_{\mathrm{ave}}} & =\int_{-\infty}^{\infty} d \omega 2 i \operatorname{Im} \Sigma_{i m p}^{R}\left(t_{\mathrm{ave}}, \omega\right) G_{\mathbf{k}}^{<}\left(t_{\mathrm{ave}}, \omega\right)-\int_{-\infty}^{\infty} d \omega 2 i \operatorname{Im} G_{\mathbf{k}}^{R}\left(t_{\mathrm{ave}}, \omega\right) \Sigma_{i m p}^{<}\left(t_{\mathrm{ave}}, \omega\right) \\
& +\int_{-\infty}^{\infty} d \omega 2 i \operatorname{Im} \Sigma_{\text {phonon }}^{R}\left(t_{\text {ave }}, \omega\right) G_{\mathbf{k}}^{<}\left(t_{\text {ave }}, \omega\right)-\int_{-\infty}^{\infty} d \omega 2 i \operatorname{Im} G_{\mathbf{k}}^{R}\left(t_{\text {ave }}, \omega\right) \Sigma_{\text {phonon }}^{<}\left(t_{\text {ave }}, \omega\right) \\
& +\int_{-\infty}^{\infty} d \omega 2 i \operatorname{Im} \Sigma_{\text {el-el }}^{R}\left(t_{\text {ave }}, \omega\right) G_{\mathbf{k}}^{<}\left(t_{\text {ave }}, \omega\right)-\int_{-\infty}^{\infty} d \omega 2 i \operatorname{Im} G_{\mathbf{k}}^{R}\left(t_{\text {ave }}, \omega\right) \Sigma_{\text {el-el }}^{<}\left(t_{\text {ave }}, \omega\right)
\end{aligned}
$$

Individual subsets can (and do) cancel out, leading to effective disappearance of the interaction in dynamics.

$$
\begin{aligned}
\Sigma_{\mathrm{el}-\mathrm{el}}^{<} & =f_{\omega} \operatorname{Im} \Sigma_{e l-e l}^{R} \\
G_{\mathrm{el}-\mathrm{el}}^{<} & =f_{\omega} \operatorname{Im} G_{e l-e l}^{R}
\end{aligned}
$$

Combining electron-electron and electron-phonon scattering

Nature Communications 7, 13761 (2016)

$$
g^{2}=0.02
$$

Step in lifetimes remains visible

Competition between e-p and ee scattering

Matthiessen's rule, "Scattering rates add for small interaction strength" does not hold here.

Lessons learned

1. You can assign a time-dependence to a parameter, but be careful to which one.
2. Just because there is scattering, that does not mean there is dynamics.
3. Because the dynamics are determined by a balance in rates, subinteractions can switch on and off

NC STATE

Outline

- Photoemission from excitons and coherences
- Seeing excitons with time-resolved ARPES
- Exciton interference
- Photoemission from coherences inside solids
- Theoretical perspective on non-equilibrium spectroscopy
- Correlation functions - What do we measure?
- Non-equilibrium correlation functions - What's different?
- Non-equilibrium many-body theory

Phys. Rev. B 97, 235310 (2018)
Phys. Rev. B 99, 125303 (2019) arXiv:2005.08978

PRX 10.1103/PhysRevX.8.041009
J. Elec. Spec. Rel. Phenom. 251, 147104 (2021)

