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Unitary evolution under a time-dependent Hamiltonian is a key component of simulation on quantum hard-
ware. Synthesizing the corresponding quantum circuit is typically done by breaking the evolution into small
time steps, also known as Trotterization, which leads to circuits the depth of which scales with the number of
steps. When the circuit elements are limited to a subset of SU (4)—or equivalently, when the Hamiltonian may be
mapped onto free fermionic models—several identities exist that combine and simplify the circuit. Based on this,
we present an algorithm that compresses the Trotter steps into a single block of quantum gates using algebraic
relations between adjacent circuit elements. This results in a fixed depth time evolution for certain classes of
Hamiltonians. We explicitly show how this algorithm works for several spin models, and demonstrate its use for
adiabatic state preparation of the transverse field Ising model.
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I. INTRODUCTION

Quantum computers were initially conceived of as a tool
for simulating quantum systems [1], and indeed, this is seen
as one of the most promising applications for near-term quan-
tum processors [2]. The main challenge for implementing
such simulations on a quantum computer is to generate a
circuit—usually composed of single- and two-qubit gates—
that mimics the effect of the time evolution operator U (t ) on
qubits, which is termed unitary synthesis. Unitary synthesis in
the most generic case is exponentially hard due to exponential
growth of the Hilbert-space dimension, i.e., size of the matrix
U (t ), with the system size [3,4]. Though there are ways to
ameliorate this problem by leveraging the algebra generated
by the terms in the Hamiltonian [5], generating an exact
circuit remains classically NP hard for interacting fermion
models. In practice, an approximate circuit implementation
of the unitary is often sufficient and can even be imposed by
technological constraints as we discuss next.

The challenges are exacerbated by the fact that near-term
quantum computers are small and noisy [2], which greatly
limits how deep quantum circuits can be before their results
are indistinguishable from random noise. This means that
circuit synthesis techniques must also attempt to optimize
quantum circuits to be as shallow as possible; such circuit op-
timization is an NP-hard problem for general quantum circuits
[6,7].

Generating a circuit is particularly difficult for dynamic
simulations of a quantum system evolving in time. This is
because a separate circuit must be generated for each time
step, and for a general Hamiltonian the circuit depth increases
with increasing simulation time [8–10].

*ekokcu@ncsu.edu
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Here, we present an algorithm for compressing circuits for
simulations of time evolution to a constant depth, indepen-
dent of increasing simulation time, for a particular class of
Hamiltonians. The common feature of these Hamiltonians is
that they can be mapped to free fermionic Hamiltonians [11];
equivalently, they produce a Hamiltonian algebra that scales
polynomially in the number of qubits [5]. This property allows
us to circumvent the no-fast-forwarding theorem [8,12,13].

Our approach uses a first-order Trotter-Suzuki decompo-
sition of the time evolution operator of a time-dependent
Hamiltonian H(t ) for the unitary synthesis step. The unitary
operator U (t ) for this process obeys

∂tU (t ) = −iH(t )U (t ) (1)

with U (t = 0) = I, i.e., the identity operator. This equa-
tion can be approximately solved by Trotter decomposition
with a time step size �t :

U (t ) = lim
�t→0

e−i�tH(tN ) · · · e−i�tH(t2 )e−i�tH(t1 ), (2)

where tn = (n − 1)�t , and tN = t (kept constant while taking
the limit). After approximating each small time step e−i�tH(ti ),
the right-hand side of Eq. (2) often has a straightforward
circuit implementation that approximates U (t ). The accuracy
of the Trotter decomposition depends on the size of �t . This
is the tradeoff with the Trotter decomposition: the smaller the
time step, the longer the circuit. Moreover, regardless of the
choice of �t , the circuit grows with increasing simulation
time.

In order to deal with the circuits that grow as a function of
simulation time, several approaches exist, each with inherent
limitations. We limit the discussion to those methods that
can be executed on noisy intermediate scale quantum (NISQ)
hardware, putting aside the others [14–19]. General purpose
transpilers can be used to shorten the growing-depth circuits,
but these do not typically take advantage of the algebraic
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structure of the problem, and are limited to how much com-
pression can be achieved, ultimately placing a limit on the
largest feasible simulation time. Constant depth circuits can
be obtained variationally by optimizing a generic circuit via
a hybrid classical-quantum algorithm [20]. However, these
approximate circuits are only applicable to time evolution of
a particular initial state and their error grows with simulation
time. Alternatively, a more general constant depth circuit may
be found by using the distance from a specific target unitary as
the cost function [21]—this approach does not scale favorably
in the number of qubits due to the necessarily large number of
parameters in the classical optimization. Finally, constructive
approaches to circuit synthesis that rely on the algebraic struc-
ture of the unitaries have been proposed [3,5,22], but these
require a similar classical optimization step.

Our proposed method, while not applicable to all problems,
is a constructive proof of the circuit Ansatz used in Ref. [21].
Because of the constructive nature, it scales to thousands of
qubits, which is out of the reach of previous methods [5,21]
that require optimization. This paper is accompanied by a dual
paper [23] which focuses on the underlying matrix structures
of the circuit elements, and on the efficient and numerically
stable implementation of the circuit compression algorithms
for each model discussed below. We show that this compres-
sion technique scales polynomially in the number of qubits,
and is thus applicable for the foreseeable future on quantum
hardware. Our codes are made available as part of the fast
free fermion compiler (F3C) [24–26]. F3C is built based on the
QCLAB toolbox [27,28] for creating and representing quantum
circuits.

We demonstrate the power of our compressed circuits by
showing how they enable adiabatic state preparation (ASP),
where a system is evolved under a slowly varying Hamiltonian
in order to prepare a nontrivial ground state. The system
is initialized in the ground state of the initial Hamiltonian,
which is presumed to be trivial to prepare, and ends in the
(nontrivial) ground state of the final Hamiltonian given slow
enough variation of the Hamiltonian. Given the constant depth
nature of the circuit for different times, the state preparation
for long times is ultimately accomplished in a single step. We
apply this to preparing the ground state of the transverse field
Ising model (TFIM) on five qubits.

The paper is organized as follows. We define an object
called a “block” and prove the existence of a constructive
compression method for circuits made only of blocks in
Sec. II. In Sec. III, we propose specific mappings between the
circuit elements of Trotter-decomposed time evolution opera-
tors and blocks for the Kitaev chain, the TFIM, the transverse
field XY (TFXY) model, as well as a nearest-neighbor free
fermion model. We further prove that the three properties of
blocks hold for each, thus showing that a compressed circuit
exists for these models. We apply our method to ground-state
construction of the TFIM with open boundary conditions in
Sec. IV, where we show that compressed Trotter circuits
are superior to traditional Trotter circuits due to their ability
to simulate as slow a time evolution as desired, which is
significant for adiabatic evolution. We finish by discussing
the potential implications of our results in a broad sense
in Sec. V.

II. BLOCKS AND THE COMPRESSION THEOREM

In this section, we will define and prove generic mathe-
matical tools necessary to show that certain models have a
Trotter expansion that can be compressed down to a fixed
depth circuit. To compress the Trotter expansion, we map cer-
tain elements in the Trotter step into a mathematical structure
called a block. These block structures are model dependent
and are required to have certain simplification rules given in
Def. 1. We follow with lemmas and theorems that use these
simplification rules to compress a Trotter circuit that is fully
expressed via blocks into a fixed depth circuit.

Let Bi(�θ ) be functions of �θ , where the index can be any
positive integer i = 1, 2, 3, . . . and �θ are multiple real num-
bers. Each Bi(�θ ) will be mapped to quantum circuit elements
in a model dependent way such that the parameters �θ will
be the parameters for the gates, and the index will separate
them in terms of which qubits they act on. The number of
parameters and index to qubit(s) mapping vary from model
to model, as it will be seen in Sec. III. For example, we
will have Bi(θ ) ≡ exp(−iθXiXi+1) for odd i and Bi(θ ) ≡
exp(−iθYiYi+1) for even i as the mapping for an open one-
dimensional (1D) Kitaev chain in Sec. III A, and show that this
mapping satisfies the three defining properties listed below.

Definition 1 (Block). Define a block Bi(�θ ) as a structure
that satisfies the following three properties.

(1) The fusion property: For any set of parameters �α and �β,
there exists �a such that

Bi(�α) Bi(�β ) = Bi(�a). (3)

(2) The commutation property: For any set of parameters �α
and �β

Bi(�α) Bj (�β ) = Bj (�β ) Bi(�α), |i − j| > 1. (4)

(3) The turnover property: For any set of parameters �α, �β,
and �γ there exist �a, �b, and �c such that

Bi(�α) Bi+1(�β ) Bi(�γ ) = Bi+1(�a) Bi(�b) Bi+1(�c). (5)

Figures 1(a)–1(c) illustrates these properties. Henceforth,
we drop the parameters �θ when referring to a block and simply
write Bi for convenience. The reader should assume that each
block in an expression may have different parameters unless
it is stated otherwise.

Using Def. 1, we now define three important block struc-
tures, which will be used to obtain and prove the fixed depth
circuits. We start with a cascade of blocks.

Definition 2 (Cascade). Define a “cascade” of blocks to be

Ci, j :=
j∏

k=i

Bk = Bi Bi+1 · · · Bj, (6)

where Bi are blocks as defined in Def. 1 and i < j. Figure 1(d)
illustrates the cascade structure.

Lemma 1. Let Bm be a block as defined in Def. 1 and let
Cj,n be a cascade of blocks as defined in Def. 2 with j � m <

n. Then the transformation

Cj,n Bm = Bm+1 Cj,n (7)
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FIG. 1. (a–c) Defining properties of a block given in Def. 1. (d–g) Block structures cascade, zigzag, and triangle defined in Defs. 1 and 3,
and square defined in theorem 2.

can be performed by one turnover operation. Figure 2(a) illus-
trates Eq. (7) with j = 1, n = 5 and m = 2.

Proof. Using Def. 2, we obtain

Cj,nBm =
⎛
⎝ n∏

k= j

Bk

⎞
⎠Bm

=
⎛
⎝m+1∏

k= j

Bk

⎞
⎠Bm

(
n∏

k=m+2

Bk

)

=
⎛
⎝m−1∏

k= j

Bk

⎞
⎠Bm Bm+1 Bm

(
n∏

k=m+2

Bk

)
.

Next, applying the turnover property to Bm Bm+1 Bm and using
the commutation property yields

Cj,nBm =
⎛
⎝m−1∏

k= j

Bk

⎞
⎠Bm+1 Bm Bm+1

(
n∏

k=m+2

Bk

)

= Bm+1

⎛
⎝m−1∏

k= j

Bk

⎞
⎠(

n∏
k=m

Bk

)

= Bm+1

⎛
⎝ n∏

k= j

Bk

⎞
⎠

= Bm+1 Cj,n,

which completes the proof. �

Next, we define a triangle of blocks, composed of multiple
cascades, and prove that an extra block can be fully com-
pressed into a triangle.

Definition 3 (Triangle). Define a “triangle” of blocks as

Ti :=
i−1∏
k=0

Ci−k,i = Ci,i Ci−1,i · · · C1,i, (8)

where Ci, j are cascades of blocks as defined in Def. 2. Figure
1(f) illustrates the triangle structure.

Theorem 1. Let Bm be a block as defined in Def. 1 and let
Tn be a triangle of blocks as defined in Def. 3 with m � n.
Then Bm can be fully merged into Tn, i.e.,

Tn Bm = Tn, (9)

via n − m turnover operations and one fusion operation. Fig-
ure 2(b) illustrates Eq. (9) with n = 5 and m = 2.

Proof. Using Def. 3, we obtain

Tn Bm =
(

n−1∏
k=0

Cn−k,n

)
Bm = Cn,n Cn−1,n · · · C1,n Bm.

Applying lemma 1 n − m times yields

Tn Bm = Cn,n Cn−1,n · · · C1,n Bm

= Cn,n Cn−1,n · · · C2,n Bm+1 C1,n

...

= Cn,n Cn−1,n · · · Cn−m+1,n Bn Cn−m,n · · · C1,n,

where each time we swap a block with a cascade we perform
one turnover. Hence, we have done n − m turnover operations
in order to move the extra block Bm to Bn. Next, we can merge
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FIG. 2. (a) Illustration of lemma 1. As it can be seen here, this lemma can be interpreted as a block shifting one position down while
passing through a cascade from right to left. (b) Diagrammatic representation of theorem 1. Block B2 on the right side of a triangle with height
5, i.e., T5, finds its way all the way down to the fifth level passing through cascades and finally merges with the block that is at the end of the
path, and results with a triangle with height 5 made by blocks with different parameters at the end. (c, d) Transformation described in theorem
2, respectively, for triangles with even and odd height. As described, one starts by pushing the leftmost cascade all the way to the right, and
continues by pushing every other cascade until reaching to the longest cascade C1,n. This results in the square circuits shown in the rightmost
part of both panels.

Bn into the triangle Cn,n Cn−1,n · · · Cn−m+1,n, i.e.,

Cn−m+1,n Bn =
(

n∏
k=n−m+1

Bk

)
Bn

=
(

n−1∏
k=n−m+1

Bk

)
Bn Bn

=
(

n−1∏
k=n−m+1

Bk

)
Bn = Cn−m+1,n,

where we applied the fusion property once. Finally,

Tn Bm = Cn,n Cn−1,n · · · Cn−m+1,n Cn−m,n · · · C1,n

=
n−1∏
k=0

Cn−k,n = Tn,

via n − m turnover and one fusion operation. �
Theorem 1 shows that a triangle and any finite set of blocks

can be merged into a triangle. Here we define another block
structure, called a zigzag of blocks, which corresponds to
a time step of a Trotter decomposition of the Hamiltonian
evolution after mapping to blocks. We use theorem 1 to ex-
plicitly show that a zigzag can efficiently be compressed into
a triangle of appropriate size. We also show that a triangle can
be merged with another triangle efficiently, using the fact that
a triangle is a finite set of blocks.

Definition 4 (Zigzag). Define a “zigzag” of blocks as

Li, j :=

⎛
⎜⎝ j∏

k=i
odd

Bk

⎞
⎟⎠

⎛
⎜⎝ j∏

k=i
even

Bk

⎞
⎟⎠, (10)

where Bk are blocks as defined in Def. 1 and i < j; note
all even numbered blocks are to the right of odd numbered
blocks. Figure 1(e) illustrates the zigzag structure.

Corollary 1. Let C1,n, Tn, and L1,n be a cascade, triangle,
and zigzag of blocks as defined in Def. 2 to 4, respectively.
Then a triangle with height n and a cascade (zigzag) with
height n can be merged into a triangle with height n, i.e.,

Tn C1,n = Tn, Tn L1,n = Tn, (11)

with n(n − 1)/2 turnover and n fusion operations.
Proof. In both cases, we are merging one block from every

height 1, 2, 3, . . . , n, therefore we use the result of 1 for each
of these n blocks. Each block will require one fusion, therefore
we need to apply n fusion operations. The number of turnover
operations is

n∑
k=1

(n − k) =
n−1∑
k=1

k = n(n − 1)

2
,

which concludes the proof. �
Corollary 2. Two triangles with height n can be merged

into a triangle with height n, i.e.,

Tn Tn = Tn, (12)

via n(n2 − 1)/6 = O(n3) turnover and n(n − 1)/2 = O(n2)
fusion operations.

Proof. There are n(n − 1)/2 blocks in Tn. As a result of
theorem 1 this merging will require n(n − 1)/2 fusion opera-
tions. Using the definition of Tn, we see that we are effectively
merging the triangle with cascades with heights 1 to n. Using
the result of Cor. 1, we get the number of turnover operations
required for this merger to be

n∑
k=1

k(k − 1)

2
= n(n2 − 1)

6
, (13)

which concludes the proof. �
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Using Cors. 1 and 2 as induction steps, we provide the two
following compression techniques for Trotter decompositions
involving blocks only.

Corollary 3 (Compression for time-dependent Hamil-
tonians). A product of r zigzags with height n for r > 1 will
lead to a triangle with height n,

r∏
k=1

L1,n = Tn, (14)

via O(n2r) turnover and O(nr) fusion operations.
Proof. A zigzag can be viewed as a triangle with identity

operations in place of the missing blocks. Therefore for r = 1,
the result should be a triangle. Using Cor. 1, we know that
adding another zigzag to the triangle each time will require
O(n2) turnover and O(n) fusion operations. Doing this r times
will require O(n2r) turnover and O(nr) fusion operations.

Corollary 4 (Compression for time-independent Hamil-
tonians).Consider r identical zigzags with height n. Using the
fact that they are the same, they can be compressed into a
triangle with height n,

(L1,n)r = Tn, (15)

where we use power instead of the product symbol to empha-
size that the parameters are the same, via O(n3 log2 r) turnover
and O(n2 log2 r) fusion operations.

Proof. Given that zigzags (with added identity gates) are
triangles, the left-hand side of (15) can also be written as (Tn)r .
We can replace it with [(Tn)2]r/2 and turn it into (Tn)r/2 via
O(n2) fusion and O(n3) turnover operations using Cor. 2. We
need to repeat this O(log2 r) many steps in total, leading to
this compression being performed via O(n3 log2 r) turnover
and O(n2 log2 r) fusion operations. �

Corollaries 3 and 4 are the main results used for compres-
sion. For a time-independent Hamiltonian, one can choose
either of the two compression algorithms. The performance
depends on the number of Trotter steps needed, and the num-
ber of qubits. Depending on the particular problem at hand,
one or the other may be preferable; the O(n2r) scaling of
Cor. 3 is a better choice for larger systems, whereas Cor. 4
is a better choice for a large number of Trotter steps. For
time-dependent Hamiltonians, each Trotter time step will have
different coefficients, meaning the corresponding zigzags will
not all be identical. In this case, Cor. 3 is the only choice for
compression.

So far we have proved that we can compress any finite
expansion given in terms of blocks into a triangle, a block
structure with depth O(n) where n is the height of the trian-
gle. When translated into a quantum circuit, this compression
corresponds to a compression of a long circuit into a short,
fixed depth circuit. For NISQ devices, it is crucial to have
short depth circuits due to the fact that the noise increases for
longer circuit depths. In the rest of this section, we will show
that the depth of the triangle can be reduced in half, leading to
better quantum circuits for NISQ devices.

Lemma 2. For i < a � b � j,

Ca,b Ci, j = Ci, j Ca−1,b−1. (16)

Proof. Ca,b = BaBa+1 · · · Bb is formed by blocks with in-
dices that are between i and j, hence each of them can be

passed from the left side of Ci, j to the right side by decre-
menting the index by one. �

Theorem 2. A triangle with height n can be further opti-
mized to a square with height n which is defined as

Sn =
2∏

k=n−1↓
k even

Ck,n

1∏
k=n↓
k odd

C1,k (17)

for odd n and

Sn =
1∏

k=n−1↓
k odd

Ck,n

1∏
k=n−1↓

k odd

C1,k (18)

for even n, where the down arrow ↓ indicates that the product
is done in the decreasing order for index k. Sn has the same
number of blocks as Tn, however it has two-thirds the depth
of Tn, which is important for quantum computers. Figure 1(g)
illustrates the square structure.

Proof. First, consider the case for odd n. The definition of
a triangle is

Tn =
n−1∏
k=0

Cn−k,n = Cn,n Cn−1,n · · ·C1,n. (19)

We will carry all Codd,n cascades, i.e., Cn,n, Cn−2,n, . . . ,C5,n,
and C3,n, to the right side of C1,n by using lemma 2 in the given
order. In that order, Cm,n will pass through m − 1 cascades
and become C1,n−m+1 at the end, thereby leaving all the Ceven,n

cascades behind. This leads to a square formation for odd n as
defined in the theorem. Figure 2(d) illustrates this odd n case.

For even n, we will carry all Ceven,n cascades, i.e., Cn,n,
Cn−2,n, . . . ,C4,n, and C2,n. In that order, Cm,n will pass through
m − 1 cascades and become C1,n−m+1 at the end, thereby
leaving all the Codd,n cascades behind. This leads to a square
formation for even n as defined in the theorem. Figure 2(c)
illustrates this even n case. �

In summary, triangles are useful to compress a Trotter
expansion if the Trotter steps can be represented with blocks.
After the compression, we are left with a triangle circuit. This
can then be further simplified to a square (with the same
number of blocks as the triangle), but with half the total
circuit depth. This leads to the following overall compression
algorithm.

(1) Find a block mapping, and represent the circuit via
blocks.

(2) Compress all blocks one by one into a triangle.
(3) Transform the triangle into a square.
In the next section, we provide block mappings for Trotter

decompositions of certain Hamiltonians.

III. TIME EVOLUTION OF CERTAIN SPIN MODELS

In this section, we show that the operations outlined in
Sec. II are applicable to time evolution for several commonly
found models in physics and quantum information theory.
Each of these models has a Hamiltonian written as a sum of
Pauli operators for n qubits (or n spin-1/2 particles):

H(t ) =
∑

j

Hj (t )σ j, (20)
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where Hj (t ) are time- and site-dependent coefficients and σ j

are Pauli string operators, i.e., elements of the n-site Pauli
group Pn = {I, X,Y, Z}⊗n. The common feature of the mod-
els for which theorem 1 applies is that they can all be mapped
onto free fermionic models after a Jordan-Wigner transfor-
mation [11]—or, equivalently, that the algebra generated by
the operators in the Hamiltonian scales polynomially in the
system size [5]. This suggests that there may be other models
that share this property that will be amenable to this approach.

We next consider the Trotter decomposition of the time
evolution operator given in Eq. (2) for those models. To
generate a circuit for the full U (t ), we must convert each
exponential exp[−i�tH(ti)] into a set of gates. The most
straightforward way to map these exponentials into a set of
gates is to first decompose the Hamiltonian in each exponen-
tial into components that each contain mutually commuting
operators. Trotterization can once again be employed to ap-
proximate each exponential as a product of exponentials of
each component of the Hamiltonian. To the first order in �t ,
this approximation is written as

e−i�tH(ti ) =
∏

j

e−i�tH (ti )σ j + O(�t2) (21)

where j multiplies over the different components of the
Hamiltonian. Though higher-order approximation schemes
exist [29], this first-order approximation is sufficient for our
method. Once the time evolution is Trotter decomposed into a
series of exponentials of single Pauli strings, a quantum circuit
can then be constructed from single- and two-qubit operations
[30,31]. After finding a block mapping to exponentials of
single Pauli strings that occur in Eq. (21), the operations given
in Sec. II can be used to recombine the Trotter steps into
a square, which can then be transformed into a fixed depth
circuit for the models discussed below.

A. 1D Kitaev chain

The Hamiltonian for the 1D Kitaev chain with open bound-
ary conditions is given by

H =
∑
odd i

aiXiXi+1 +
∑
even i

biYiYi+1. (22)

The time evolution can be approximated using the Trotter
decomposition with a time step �t ; for a five-site chain this
can be written explicitly as

e−i�tH = e−i�ta X1X2 e−i�tc X3X4 e−i�tb Y2Y3 e−i�td Y4Y5 . (23)

Note that other choices are also available as multiplications of
these exponentials in any order are all identical to each other
within O(�t2) error.

Consider the mapping Bi ≡ Bi(θ ) = exp(−iθXiXi+1) for
odd i and Bi ≡ Bi(θ ) = exp(−iθYiYi+1) for even i. With this
mapping, the Trotter step given in Eq. (23) can be written in
terms of Bi matrices:

e−i�tH = B1(�t a) B3(�t c) B2(�t b) B4(�t d ). (24)

Here we show that these operators are blocks and satisfy the
properties given in Def. 1. Fusion is easily satisfied,

e−iaXiXi+1 e−ibXiXi+1 = e−i(a+b)XiXi+1 ,

e−iaYiYi+1 e−ibYiYi+1 = e−i(a+b)YiYi+1 ,
(25)

and independent blocks that do not share a spin commute
due to the fact that they act on different spins. This leaves
us with the proof of the turnover property of blocks; we need
to demonstrate that

e−iaXiXi+1 e−ibYi+1Yi+2 e−icXiXi+1

= e−iαYi+1Yi+2 e−iβXiXi+1 e−iγYi+1Yi+2 (26)

where i is an odd number, and α, β, γ are functions of a, b, c.
To show this, we note that the exponentiated operators form
an su(2) algebra. This is easily seen from their commutation
relations:

[XiXi+1,Yi+1Yi+2] = 2i XiZi+1Yi+2,

[XiZi+1Yi+2, XiXi+1] = 2i Yi+1Yi+2,

[Yi+1Yi+2, XiZi+1Yi+2] = 2i XiXi+1. (27)

With this, we can leverage a standard Euler angle decompo-
sition in su(2). Denoting the three directions in su(2) as x̂,
ŷ, and ẑ, any element in su(2) can be written as a rotation
around x̂ followed by a rotation around ẑ followed by another
rotation around x̂. In Eq. (26), the directions are x̂ ≡ XiXi+1,
ẑ ≡ Yi+1Yi+2 on the left-hand side, and vice versa on the right.
Therefore for any a, b, c ∈ R, there exist α, β, γ ∈ R and vice
versa such that Eq. (26) is satisfied.

The coefficients can be calculated by mapping 2 × 2 Pauli
matrices to the exponents XiXi+1, Yi+1Yi+2 due to the iso-
morphism between the algebra generated by the exponents
and su(2). Mapping X to XiXi+1 and Z to Yi+1Yi+2, Eq. (26)
becomes(

cos a −i sin a
−i sin a cos a

)(
e−ib 0

0 eib

)(
cos c −i sin c

−i sin c cos c

)

=
(

e−iα 0
0 eiα

)(
cos β −i sin β

−i sin β cos β

)(
e−iγ 0

0 eiγ

)
,

(28)

which may be solved to obtain the following equations,

tan(α + γ ) = tan(b)
cos(a − c)

cos(a + c)
,

tan(α − γ ) = − tan(b)
sin(a − c)

sin(a + c)
,

(29)

and their inverses:

tan(a + c) = tan(β )
cos(α − γ )

cos(α + γ )
,

tan(a − c) = − tan(β )
sin(α − γ )

sin(α + γ )
. (30)

α and γ can be solved directly from Eq. (29), and then β can
be solved from one of the relations given in Eq. (30). Although
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FIG. 3. (a) Block mapping of the 1D Kitaev chain. (b) Trotter-decomposed operator for a single time step given in Eq. (23). (c) Full time
evolution circuit after Trotter compression. Each block XX indicates exp(−iaXX ) for some a (and similar for YY ). (d) Full time evolution of
the XY model can be written as two consecutive evolutions of Kitaev chains. (e) These two evolutions can be combined to make XX and YY
operations adjacent to each other to reduce the CNOT count by one-half.

we provide the analytical expressions here, in the code [24,25]
we use another method based on Givens rotations applied on
2 × 2 matrices, explained in detail in Ref. [23]. This method
is far more efficient and precise compared to calculating the
angles via Eqs. (29) and (30) because the analytic expressions
rely on repeated use of trigonometric and inverse trigonomet-
ric functions.

Having shown that the elements of the Kitaev chain circuit
satisfy the properties of a block, theorem 1 and Cors. 3 and 4
say that the Trotter circuit for this model can be compressed
into a triangle of blocks, and theorem 2 states that it can
be further simplified into a square as given in Fig. 3(c) .
Considering the n spin Kitaev chain, one Trotter step would
have n − 1 two-qubit XX and YY rotations, leading to n − 1
blocks with the mapping we provided. This would lead to
n(n − 1)/2 blocks in the final square circuit. Depending on
the hardware, this means we either need n(n − 1)/2 two-qubit
rotations or, considering the circuit implementation of XX and
YY rotations via CNOT gates, we need n(n − 1) CNOT gates.

B. XY model

The Hamiltonian for the 1D XY model with open boundary
conditions is given by

H =
n−1∑
i=1

(aiXiXi+1 + biYiYi+1) (31)

where n is the number of spins. It can be shown that this
Hamiltonian is the sum of two Kitaev chains:

H = Heven X + Hodd X, (32)

where

Heven X =
∑
even i

aiXiXi+1 +
∑
odd i

biYiYi+1,

Hodd X =
∑
odd i

aiXiXi+1 +
∑
even i

biYiYi+1. (33)

One can check that these chains are independent from each
other, i.e., [Heven X,Hodd X] = 0, by observing

[XiXi+1,YiYi+1] = 0,

[XiXi+1, Xi+1Xi+2] = 0,

[YiYi+1,Yi+1Yi+2] = 0. (34)

Therefore the evolution of the XY model can be written as two
separate evolutions of Kitaev chains, as given in Fig. 3(d). In
fact, Eq. (34) also shows that any two terms in the separate
evolution circuits commute with each other, and therefore can
be moved freely. Considering the fact that XX and YY when
individually implemented require four CNOT gates in total
whereas their combination requires only two CNOT gates, it
is advantageous to bring XX and YY rotations together for
hardware that uses CNOT gates. Equation (34) allows us to
transform the circuit in Figs. 3(d) and 3(e) and reduce the
number of CNOT gates by one-half.

C. Transverse field Ising model

The Hamiltonian for the 1D TFIM with open boundary
conditions is given by

H =
n−1∑
i=1

aiXiXi+1 +
n∑

i=1

biZi. (35)
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FIG. 4. (a) Block mapping of the 1D TFIM. As can be seen, blocks are not always two qubit operators. (b) The Trotter-decomposed
operator for a single time step of the evolution under the 1D TFIM Hamiltonian. (c) Full time evolution circuit after Trotter compression. Each
block XX indicates exp(−iaXX ) for some a, and each block Z indicates exp(−ibZ ) for some b.

The time evolution is again factored into Trotter steps of
length �t ; for a four-site chain this can be implemented as
shown in Fig. 4.

Consider the mapping B2i−1 ≡ B2i−1(θ ) = exp(−iθZi )
and B2i ≡ B2i(θ ) = exp(−iθXiXi+1). With this mapping,
a Trotter step for this model can be written as a product of
Bi matrices. Here we show that these operators satisfy the
block properties from Def. 1. Note that this is an example
where not all blocks are two-qubit operators, which shows
that blocks can vary in size. The fusion operation is satisfied
by this mapping:

e−iaXiXi+1 e−ibXiXi+1 = e−i(a+b)XiXi+1 ,

e−iaZi e−ibZi = e−i(a+b)Zi . (36)

The commutation of blocks with an odd index i is clear since
they do not act on a common spin: B2i−1 acts on qubit i and
B2i+1 acts on qubit i + 1. Blocks with even i on the other
hand should be checked explicitly, because B2i acts on spins
i and i + 1, and B2i+2 acts on spins i + 1 and i + 2, i.e., they
both act on spin i + 1. However, since [XiXi+1, Xi+1Xi+2] = 0,
commutation of independent blocks applies for even indexed
blocks as well. This leaves us with the turnover property:

e−iaXiXi+1 e−ibZi e−icXiXi+1

= e−iαZi e−iβXiXi+1 e−iγ Zi . (37)

To show this, we note that, similar to the Kitaev chain, the
exponents form an su(2) algebra:

[Zi, XiXi+1] = 2i YiXi+1,

[YiXi+1, Zi] = 2i XiXi+1,

[XiXi+1,YiXi+1] = 2i Zi. (38)

Therefore, by the arguments given in the discussion for the
Kitaev chain, it can be shown that the turnover property is
satisfied for the blocks as defined for the TFIM as well. The
relation between the sets of angles is also the same as in
Eq. (29) due to the fact that it is the same switch between
Euler decompositions of su(2).

Having shown that the elements of the TFIM circuit satisfy
the properties of a block (Def. 1), it follows from theorem 1
that the Trotter circuit for this model can be compressed into
a triangle of blocks.

Considering the n spin TFIM, one Trotter step would have
n − 1 two-qubit XX and n one-qubit Z rotations, leading to
2n − 1 blocks with the mapping we provided. This would
lead to n(2n − 1) blocks or n Trotter steps in the final square
circuit. Depending on the hardware, this means we either need
n(n − 1) XX rotations or, considering the circuit implementa-
tion of XX rotations via CNOT gates, we need 2n(n − 1) CNOT

gates.

D. Transverse field XY model

The Hamiltonian for the 1D TFXY model with open
boundary conditions is given by

H =
n−1∑
i=1

(aiXiXi+1 + biYiYi+1) +
n∑

i=1

ciZi. (39)

Here, the verification of the block properties is somewhat
more complex. First, we define the Bi operator as

Bi ≡ e−ia Zi e−ib Zi+1 e−ic XiXi+1

× e−id YiYi+1 e−i f Zi e−ig Zi+1 (40)

which can be shown diagrammatically as in Fig. 5(a). A
Trotter step for this model can be written in terms of the Bi

matrices, since the exponents in Eq. (40) involve all the terms
in the Hamiltonian. We proceed to prove that the mapping (40)
satisfies all block properties.

1. Commutation

First, we prove that the Bi operators satisfy the commuta-
tion relation given in Def. 1. This property follows from the
observation that if two blocks are not on top of each other nor
nearest neighbors to each other they do not act on a shared
spin. For example, Bi acts on qubits i and i + 1, and Bi+2

acts on qubits i + 2 and i + 3. Therefore they act on different
spaces, and commute.

2. Fusion

To prove the fusion property, it suffices to show that the
expression given in Eq. (40) represents a generic element
of a Lie group. The algebra formed by the exponents in
Eq. (40) and their commutators is the Hamiltonian algebra
for the two-site TFXY model [5] (here we suppress i = 1 for
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FIG. 5. (a) Block structure for the 1D TFXY model. (b) A generic circuit element that can represent any element in the group exp(k)
where k results from Cartan decomposition of g(TFXY3). It can be seen that this circuit represents a generic element via Eq.(47). (c) Circuit
structure for a generic element of the group exp[g(TFXY3)] obtained via Cartan decomposition corresponding to the involution θ (g) = Z3 g Z3

and Cartan subalgebra given in Eq. (48). As it can be seen, with the block definition, this structure corresponds to B1B2B1. (d) We could have
chosen θ (g) = Z1 g Z1 instead, and come up with a generic representation of an element in the group exp[g(TFXY3)] which corresponds to
B2B1B2. Considering that both panel (c) and panel (d) are generic representations of the same group, this proves that the structure given in
panel (a) satisfies the turnover property.

convenience):

g(TFXY2) = span i{X1X2,Y1Y2, X1Y2,Y1X2, Z1, Z2}. (41)

We can use an involution θ : g → g to form a Cartan decom-
position g = k ⊕ m [32]. Specifically, the involution θ (g) =
−X1X2 gT X1X2 (which counts the number of Z matrices),
where g ∈ g(TFXY2), yields

k = span i{Z1, Z2},
m = span i{X1X2,Y1Y2, X1Y2,Y1X2}. (42)

We can choose a maximal Abelian subalgebra h ∈ m as

h = span i{X1X2,Y1Y2}. (43)

The “KHK theorem” [32] states that any element in the group
G ∈ exp(g) for g ∈ g(TFXY2) can be written as

G = e−ia Z1 e−ib Z2 e−ic X1X2 e−id Y1Y2 e−i f Z1 e−ig Z2 , (44)

which is precisely Eq. (40). Thus, two blocks can be fused
because the right-hand side of Eq. (40) is a generic element in
the Lie group exp[g(TFXY2)].

3. Turnover

To show that the blocks Bi satisfy the turnover property,
we consider the Hamiltonian algebra of the three-spin TFXY
model:

g(TFXY3) = span i{X1X2,Y1Y2, X1Y2,Y1X2, X2X3,

Y2Y3, X2Y3,Y2X3, Z1, Z2, Z3,

X1Z2X3, X1Z2Y3,Y1Z2X3,

Y1Z2Y3}. (45)

Using the involution θ (g) = Z3gZ3, where g ∈ g(TFXY3), we
partition g(TFXY3) into

k = span i{X1X2,Y1Y2, X1Y2,Y1X2, Z1, Z2, Z3},

m = span i{X2X3,Y2Y3, X2Y3,Y2X3, X1Z2X3,

X1Z2Y3,Y1Z2X3,Y1Z2Y3}. (46)

We note that k is simply

k = [I3 ⊗ g(TFXY2)] ⊕ span i{Z3}, (47)

where I3 is the identity operator for the third spin. The relation
between k and g(TFXY2) together with Eq. (44) allows us
to represent any element in the group exp(k) as in Fig. 5(b).
Therefore, by choosing the following Cartan subalgebra,

h = span i{X2X3,Y2Y3}, (48)

the KHK theorem implies that any element G in the group
exp[g(TFXY3)] can be written as G = exp(k1) exp(h) exp(k2)
where k1, k2 ∈ k and h ∈ h. This may be represented by
the circuit given in Fig. 5(c), which is a V shaped three-
block structure, with each block representing the operator in
Eq. (40).

The Cartan decomposition is not unique—we could have
alternatively used the involution θ (g) = Z1 g Z1. This results
in a swap of the first and third spins. Thus, any element in
the group exp[g(TFXY3)] can be equally well represented by
an inverted circuit as shown in Fig. 5(d). This means that we
have found two equivalent block structures that both represent
a generic element in the group exp[g(TFXY3)]; these can then
be transformed into one another, which proves the turnover
property for the block mapping of Eq. (40).

The above proofs for both fusion and turnover properties
for the block structure Eq. (40) are based on the algebraic
properties of g(TFXY2) and g(TFXY3), and do not show how
to calculate the coefficients after the fusion or turnover. Here
we provide another Lie algebra based method to calculate the
coefficients after the fusion and turnover operations.
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4. Fusion calculation

We already proved that the Bi matrices given in Eq. (40)
form a Lie group. The Lie algebra associated with that group
turned out to be the Hamiltonian algebra of a two-site TFXY
model (41). We can use a different basis for that algebra, and
rewrite it as

g(TFXY2) = span i{(X1X2 ± Y1Y2)/2,

(X1Y2 ± Y1X2)/2,

(Z1 ± Z2)/2}. (49)

We can split it into two algebras g+ and g− given by

g− = span i{(X1X2 − Y1Y2)/2, (Z1 + Z2)/2,

(X1Y2 + Y1X2)/2}, (50)

and

g+ = span i{(X1X2 + Y1Y2)/2, (Z1 − Z2)/2,

(X1Y2 − Y1X2)/2}. (51)

A simple check on the commutation relations for the basis el-
ements yields that both algebras are isomorphic to su(2), and
both are independent, i.e., [g+, g−] = 0. Renaming (XiXi+1 ±
YiYi+1)/2 ≡ Q±

i and (Zi ± Zi+1)/2 ≡ R±
i for convenience, one

can rewrite Eq. (40) as a multiplication of two independent
SU (2) elements:

Bi ≡ e−i(a+b) R+
i e−i(a−b) R−

i e−i(c+d ) Q+
i

× e−i(c−d ) Q−
i e−i( f +g) R+

i e−i( f −g) R−
i

= (e−i(a+b) R+
i e−i(c−d ) Q−

i e−i( f +g) R+
i )

× (e−i(a−b) R−
i e−i(c+d ) Q+

i e−i( f −g) R−
i ). (52)

Then, the fusion operation will boil down to multiplication
of two sets of SU (2) matrices represented by an Euler de-
composition, which only requires the su(2) turnover that we
provided in Eq. (29). Each SU (2) multiplication will require
one su(2) turnover operation, therefore fusion of two TFXY
blocks requires two su(2) turnover operations in total.

5. Turnover calculation

This proof entirely relies on the fact that the TFXY block
Eq. (40) can be written as a combination of TFIM blocks, i.e.,
Z and XX rotations. This can be achieved by plugging

YiYi+1 = ei π
4 Zi ei π

4 Zi+1 XiXi+1e−i π
4 Zi e−i π

4 Zi+1 (53)

into Eq. (40). Therefore a V shaped TFXY block structure
Bi Bi+1 Bi can be transformed to a TFIM triangle with height
3 that acts on qubits i, i + 1, and i + 2 as

X
XZ

X
XZ X

XZ

Z X
XZ X

XZ Z

Z X
XZ

i

i+1

i+2

where we deliberately grouped some gates together. All
three groups can be rewritten as a TFXY block by applying
the TFXY fusion operation we explained above once. For

example, the leftmost group is a product of the block Bi+1 ≡
exp(ia Zi+2) exp(ib Xi+1Xi+2), which is a TFXY block with
some parameters equal to zero, with another block Bi+1 ≡
exp(ic Zi+1) exp(id Zi+2) exp(ie Xi+1Xi+2). Therefore, we
end up with a 
 shaped TFXY block structure. The reverse
can be done in the same way by compressing 
 into an upside
down triangle instead.

To form the TFIM triangle from the V shaped TFXY block
structure, 26 su(2) turnover operations must be applied. To
combine the two-qubit pieces into a TFXY block, three TFXY
merge operations must be applied. Each TFXY merge requires
two su(2) turnovers, leading to a total of 32 su(2) turnover
operations for one TFXY turnover operation.

The constructive proofs we provide here use trigonomet-
ric and inverse trigonometric function evaluations frequently,
which are inefficient and inaccurate compared to simple linear
algebra operations. Thus, we additionally provide a linear
algebra based method to evaluate the angles for the fusion and
turnover operations of a TFXY model in Ref. [23]. However,
we include the Lie algebra based proof here as well because it
provides additional insight from the algebraic structure of the
TFXY model.

Since the mapping of the 1D TFXY model in Eq. (40)
satisfies the properties listed in Def. 1 it can be compressed
into a triangle according to Cor. 1.

For an n spin TFXY model, one Trotter step has n − 1 XX
and YY rotations with n one-qubit Z rotations, leading to
n − 1 blocks with the mapping we provided for the TFXY
model. This leads to n(n − 1)/2 blocks in the final square
circuit. Depending on the hardware, this means we either need
n(n − 1) two-qubit rotations (two per block) or, considering
the circuit implementation of adjacent XX and YY rotations
via two CNOT gates [33], we need n(n − 1) CNOT gates.

E. Generalized TFXY and free fermions

The algebra generated by the elements in Eq. (41) and
the generic group representation in Eq. (44) imply that we
can generalize the results for the TFXY model to the follow-
ing Hamiltonian (which can be called the generalized TFXY
Hamiltonian):

H =
n−1∑
i=1

(aiXiXi+1 + biYiYi+1

+ ciXiYi+1 + diYiXi+1) +
n∑

i=1

fiZi (54)

with the same block mapping from Eq. (40). Via the Jordan-
Wigner transformation, this Hamiltonian can be mapped to

H =
n−1∑
i=1

(αiĉ
†
i ĉi+1 + α∗

i ĉ†
i+1ĉi

+ βiĉiĉi+1 + β∗
i ĉ†

i+1ĉ†
i ) +

n∑
i=1

γiĉ
†
i ĉi (55)

where ĉi(ĉ
†
i ) is the fermion annihilation (creation) operator

on site i. Therefore, using the block mapping in Eq. (40),
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TABLE I. Number of two-qubit gates required for the constant
depth circuits on n qubits for the models discussed. Here, XX + YY
indicates the total number of XX and YY rotations.

Block mapping XX + YY CNOT count Turnover type

Kitaev chain n(n−1)
2 n(n − 1) su(2)

XY model n(n − 1) n(n − 1) su(2)
TFIM n(n − 1) 2n(n − 1) su(2)
TFXY n(n − 1) n(n − 1) g(TFXY3)

we can compress Trotter decompositions under any free, one-
dimensional Hamiltonian with nearest-neighbor hopping and
open boundary conditions.

F. Comparison of the models

We introduced three different block mappings with two
types of fusion and turnover operations. The turnover oper-
ations for the blocks given in the Kitaev chain, XY model,
and TFIM use Euler decompositions of su(2), whereas the
ones for TFXY and generalized TFXY models use algebraical
properties of g(TFXY3). The su(2) turnover is approximately
20 times more efficient than the g(TFXY3) turnover, because
the former requires diagonalization of a 2 × 2 matrix whereas
the latter requires simultaneous diagonalization of four 2 × 2
matrices [23], although in practice this only matters when the
system size grows large.

Although some models share the same type of fusion and
turnover properties, the resulting circuits vary in the number
of CNOT or two-qubit XX or YY rotation gates required for n
qubits, as shown in Table I.

Because all of these models can be derived from the TFXY
model, the circuits for the Kitaev chain, XY model, and TFIM
do not have to be compressed by the model-specific block
mappings we discussed above; one can consider them as spe-
cific instances of the TFXY model and use the TFXY block
mapping instead. For the TFIM, if one uses the TFXY block
structure, the height of the Trotter step zigzag (Def. 4) reduces
by half, leading to four or eight times fewer turnover opera-
tions depending on whether the system is time dependent or
not due to Cors. 3 and 4. Although the TFXY turnover is 20
times more expensive than the su(2) turnover, and this leads
to three to five times more time spent for the compression,
using the TFXY block structure leads to half the number of
CNOT gates in the resulting circuits, which proves particularly
useful for quantum computers that rely on the CNOT two-qubit
gate (such as transmon-based hardware).

IV. EXAMPLE: ADIABATIC STATE PREPARATION

An important step of many static and dynamic simula-
tion problems on quantum computers involves preparing the
ground state of the relevant Hamiltonian. In general, this
ground state is nontrivial to prepare on the qubits, even in
cases where the state may be known analytically. In this exam-
ple, we demonstrate how our compressed circuits can be used
to efficiently prepare nontrivial ground states on the quantum
computer with high accuracy via ASP [34,35]. In ASP, qubits
are prepared in the ground state of some initial Hamiltonian
HI , which is presumed to be trivial to prepare. The system

is then evolved under a parameter-dependent Hamiltonian
H(s) = (1 − s)HI + sHP as s is varied from 0 to 1. Here,
HP is the problem Hamiltonian, the ground state of which is
desired and in general is nontrivial to prepare. If s is varied
slowly enough, the system will remain in the ground state
of the instantaneous Hamiltonian according to the adiabatic
theorem [36]. Just how slow this variation needs to be is
dependent upon the size of the energy gap between the ground
state and first excited state.

Evolving the system under H(s) as s is varied from 0 to 1
can be viewed as evolving the system under a time-dependent
Hamiltonian. To keep this evolution adiabatic, the total time
T used to evolve s from 0 to 1 should be chosen large enough
to ensure that the system evolves slow enough. To simulate
this time-dependent Hamiltonian H(s), the time interval T is
split into N time steps of size �t (N = T/�t) and Trotter de-
composition can be used, which yields more accurate results
for smaller �t . Both requirements (large T for adiabaticity
and small �t for accuracy of Trotterization) lead to a large
number of Trotter steps, i.e., large N .

Assuming that the instantaneous Hamiltonian H(s) re-
mains within the class of free fermionic models while varying
s, we can apply our compression techniques to efficiently
produce minimal, fixed depth circuits for such an adiabatic
evolution. Our technique offers an enormous advantage in
ASP, as the ability to generate fixed depth circuits in an ef-
ficient amount of time for an arbitrarily large number of time
steps allows us to vary s arbitrarily slowly, thereby guaran-
teeing adiabatic evolution with one simple fixed depth circuit.
As shown in the companion paper [23], the compression can
be performed efficiently, and thus poses no limitation on
the adiabaticity, except for floating-point resolution of �t .
Without our compression techniques, the quantum circuits
generated via standard Trotter decomposition have a depth
growing linearly with number of Trotter steps. Considering
that ASP requires a large number of Trotter steps, i.e., large
N , these circuits rapidly become too large to produce accurate
results on NISQ devices [37].

As an example, we demonstrate ASP of a spatially uni-
form, five-spin TFIM with open boundary conditions, com-
paring performance between compressed circuits and circuits
generated with standard Trotter decomposition (i.e., uncom-
pressed circuits). The parameter-dependent Hamiltonian is
given by H(s) = (1 − s)HI + sHP where HI = hz

∑n
i=1 Zi

and HP = JP
∑n−1

i=1 XiXi+1 + hz
∑n

i=1 Zi, where n = 5 is the
number of qubits.

Varying the parameter s from 0 to 1 is equivalent to the
following time-dependent Hamiltonian:

HASP(t ) = J (t )
n−1∑
i=1

XiXi+1 + hz

n∑
i=1

Zi (56)

where J (0) = 0, and J (t ) is increased linearly to a final
time t = T such that J (T ) = JP as defined in the problem
Hamiltonian.

The qubits are initialized in the ground state of HI =
HASP(0), which in this case is simply all qubits in the spin-up
orientation, a trivial state to prepare on the quantum computer.
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FIG. 6. Simulation results from ibmq_brooklyn comparing compressed circuits vs uncompressed circuits derived from standard Trotter
decomposition. A five-qubit system is evolved under a time-dependent Hamiltonian that is adiabatically varied from an Ising model to a
transverse field Ising model (TFIM) from time t = 0 to time t = 30, and then evolved under the final (time-independent) TFIM for the
remaining time. (a) Simulation results from compressed circuits (solid red and purple diamond lines) and uncompressed circuits (blue circle
and green square lines) for two different values of Trotter step size compared to the numerically exact results (black dashed line). The black
dash-dotted line gives the expected magnetization of the final TFIM, which is maintained through the final evolution (t > 30). The solid red
curve shows higher accuracy than the purple diamond curve due to smaller Trotter error. Results from the uncompressed circuits quickly decay
to random noise, giving a magnetization of zero. (b) A zoomed-in view of the uncompressed circuit results within the portion of the plot in
panel (a) in the solid black box. CNOT counts for each uncompressed circuit throughout the simulation are denoted on the top horizontal axis
(the upper row of numbers corresponds to the blue circle line; the lower row of numbers corresponds to the green square line). The compressed
circuits contain 20 CNOT gates for all time steps.

Next, we evolve the qubits under the time-dependent Hamil-
tonian HASP from t = 0 to t = T using Trotter decomposition
to break this evolution into small time steps of size �t . If
T is large enough to achieve an adiabatic evolution, and if
�t is small enough to minimize Trotter error, the final state
of the qubits after this evolution will be the ground state
of our problem Hamiltonian HP = HASP(T ), which in gen-
eral is nontrivial to prepare. Finally, we end the simulation
by evolving the system under the time-independent prob-
lem Hamiltonian HP = HASP(T ). If adiabatic simulation was
successful, the system will remain in the stationary ground
state of the problem Hamiltonian for the entirety of this final
evolution.

We use ibmq_brooklyn, a quantum processor that relies on
CNOT as a two-qubit gate, to generate our results. To com-
press the Trotter circuit, we applied TFXY block structure
rather than TFIM block structure to minimize the number
of CNOT gates as given in Table I. Figure 6 shows sim-
ulation results with hz = −1, JP = −2, and T = 30 using
compressed circuits (red solid and purple diamond lines) and
uncompressed circuits (green square and blue circle lines).
Both plots show the average magnetization along the z di-
rection of the five-qubit system versus time as it evolved
under HASP. The average magnetization for an n-spin sys-
tem is given by 〈m(t )〉 ≡ 1

n

∑
i σ

z
i (t ). The dashed black line

gives the exact system magnetization of the instantaneous
Hamiltonian HASP(t ) (computed numerically via exact diago-
nalization), and the black dash-dotted line shows the expected
magnetization of the final Hamiltonian HP = HASP(T ). If
the system is truly varied adiabatically, its magnetization
should reach this value at T = 30 and stay at this value
throughout the remainder of the evolution under the problem
Hamiltonian.

The solid red and purple diamond curves in Fig. 6(a)
show simulation results from compressed circuits executed
on ibmq_brooklyn using two different values for �t used for
the Trotter decomposition. We applied readout error mitiga-
tion and zero-noise extrapolation to these results. The solid
red curve is in remarkably good agreement with the exactly
computed values, while the purple diamond curve stabilizes
at a final magnetization that is slightly smaller than expected;
this discrepancy is due to Trotter error. As is clear from Fig. 6,
�t = 0.05 is sufficiently small, while �t = 0.25 leads to non-
negligible Trotter error. While �t = 0.05 appears sufficiently
small in terms of Trotter error, we note that our compressed
circuits allow for �t to be arbitrarily small.

In comparison, the blue circle curve in Fig. 6(a) shows
the magnetization from the same quantum processor using
uncompressed circuits and a time step of �t = 0.05. We see
an immediate loss of accuracy in the results as the uncom-
pressed circuits quickly become too deep for NISQ hardware.
The magnetization quickly decays towards zero, which indi-
cates the results are simply random noise. To improve upon
these results, we increased �t , such that fewer time steps are
required to reach the same total simulation time, and which
in turn means the circuit depths of the uncompressed circuits
grow more slowly with the simulation time [Fig. 6(b)]. This
is shown by the green square curve, which shows hardware
results from uncompressed circuits with a time step of �t =
0.25. While its performance appears slightly better, these re-
sults, too, eventually decay to a magnetization of zero well
before the adiabatic evolution is complete.

Figure 6(b) shows a zoomed-in view of the portion of the
plot in panel (a) surrounded by the solid black box. Quantum
hardware simulation results for the uncompressed circuits for
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both �t values are shown, with the number of CNOT gates
in the circuit used for each time step given on the top hor-
izontal axis in the corresponding color (the upper line gives
CNOT counts for �t = 0.05, while the lower line gives CNOT

counts for �t = 0.25). The number of CNOT gates per circuit
for �t = 0.05 grows much faster with total simulation time
than for �t = 0.25, which is why the green (upper dashed)
curve maintains higher accuracy at initial simulation times.
For reference, our compressed circuits only contain 20 CNOT

gates for all time steps for this five-qubit system.

V. DISCUSSION AND OUTLOOK

We have demonstrated a circuit compression method lead-
ing to a fixed depth circuit for the time evolution of free
fermionic models, even for a time-dependent Hamiltonian. It
relies only on (space and time) local operations of the circuit
elements, i.e., it does not require a full time evolution operator
to begin the compression. Rather, it can locally compress two-
qubit gates, piece by piece, which makes it naturally amenable
to handling Trotter decomposition. The method obviates the
need to work with large matrices, which extends the range
of applicability and enables very efficient compression of the
circuit elements [23]. This is in contrast to alternative fixed
depth methods based on the works of Reck et al. [38] and
Clements et al. [39] which arrive at the triangle [Fig. 1(f)]
and square [Fig. 1(g)] circuit structures, respectively—with
blocks replaced by interferometer operators—by taking a
global approach to the problem and decomposing the full
unitary operator in the single-particle sector (an n × n matrix)
using Givens rotations.

While we have focused on the generalized TFXY model
and its descendants, the approach here extends to any model
that has similarly structured frustration graphs [11] or (equiv-
alently) can be mapped onto a free fermionic Hamiltonian
with nearest-neighbor hopping. We should note that the com-
pression method cannot be universally applied, as is evident
from the no-fast-forwarding theorem [12], but it is possible
that there are other classes of models where the compression
method works, such as those outlined by Gu et al. [13].
Finally, even if the entire circuit for time evolution does not
follow the required block structure, subcircuits can still be
optimized in this way (if the subcircuits do satisfy the block
structure).

Free fermionic time evolution can be used for ground-state
preparation via adiabatic evolution, which we have chosen
as an example application in this paper. More generally, it
can be shown that any generic Bogoliubov transformation
[40,41], i.e., unitary transformations of one-particle creation-
annihilation operators, can be written as a free fermionic time
evolution. Therefore the compressed circuits can be used to
generate fermionic Gaussian states as a variational quantum
eigensolver Ansatz for the ground state of any free fermionic
Hamiltonian, or as a starting approximation for interacting
systems. This was recently demonstrated for Slater determi-
nants [42], Hartree-Fock Ansätze [43], and generic fermionic
Gaussian states [44].

Since our method does not require the Hamiltonian to be
translationally invariant or time independent, the class of free
fermionic Hamiltonians that can be compressed is relatively
broad. Thus, it may be used to study free fermionic systems
after a quench from a clean to a disordered system which show
complex dynamics of the entanglement entropy [45]. Certain
topological models, e.g., the staggered free fermionic system
of the Rice-Mele model [46], are also accessible. There, the
adiabatic evolution is characterized by the Chern number of
the system; although NISQ quantum computers can measure
the Chern number in certain cases [47], adiabatic evolution
requires a compressed circuit. Free fermionic systems also
emerge as mean-field approximations of many physical sys-
tems of interest such as superconductivity and charge-density
waves [48,49]. With our method, a fixed depth circuit can be
generated to simulate nonequilibrium mean-field theories.

Broadening our perspective beyond time evolution of quan-
tum systems, we have revealed a method for manipulating and
compressing circuit elements that have three relatively simple
to check properties. For the time evolution problem discussed
in this paper, the blocks are composed of one- and two-qubit
sets of operations that are derived from particular models—
but this is not a requirement, and the circuit operations work
equally well for larger unitaries as long as the properties of
blocks are satisfied. The blocks also do not have to be identical
(as can be seen in the Kitaev chain example) and they do not
even have to be operating on the same number of qubits (as
can be seen in the TFIM example above). This suggests that
the ideas outlined above could be incorporated into transpiler
software, and that the method we proposed is far more general
than Givens rotation based methods listed above.

We anticipate that the ideas developed here can be ex-
tended and applied beyond time evolution. In particular, we
are investigating whether circuits that arise from the quantum
approximate optimization algorithm may be treated in this
fashion. Similarly, an extension to higher dimensions may
be possible, enabling simulations on quantum hardware far
beyond the current limitations.
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