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I. HAMILTONIAN ALGEBRAS OF CERTAIN MODELS

A. XY Model

For the 1-D nearest neighbour XY model with open boundary conditions and arbitrary interaction coefficients,

H =

n−1∑
i=1

(aiXiXi+1 + biYiYi+1), (S.1)

and the Hamiltonian algebra is found to be

g(XY) = span{X̂iXi+a, ŶiY i+a, X̂iY i+b, ŶiXi+b

∣∣a odd, b even, 1 ≤ i, i+ a, i+ b ≤ n}. (S.2)

The dimension of this algebra is calculated as |g(XY)| = 2
(
n
2

)
= n(n− 1).

B. TFIM and TFXY Model

For the 1-D nearest neighbour transverse field XY model with open boundary conditions and free coefficients,

H =

n−1∑
i=1

(aiXiXi+1 + biYiYi+1) +

n∑
i=1

ciZi, (S.3)
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the Hamiltonian algebra is found to be

g(TFXY) = span{Zj , X̂iXj , ŶiY j , X̂iY j , ŶiXj

∣∣1 ≤ i, j ≤ n; i < j}. (S.4)

The same algebra is found for transverse field Ising model, i.e. the bi = 0 case for the Hamiltonian given in (S.3).
The dimension of this algebra is |g(TFXY)| = n+ 4

(
n
2

)
= n(2n− 1).

C. Heisenberg Model

For the 1-D nearest neighbour Heisenberg model with open boundary conditions and free coefficients,

H =

n−1∑
i=1

(aiXiXi+1 + biYiYi+1 + ciZiZi+1), (S.5)

the Hamiltonian algebra is found to be

g(Heisenberg) = span
(
{Pauli strings with a many X, b many Y, c many Z

∣∣a+ b, a+ c, b+ c even, a, b, c ≥ 1}

\ {XXX...X, Y Y Y...Y, ZZZ...Z}
)

(S.6)

All basis elements in this algebra commute with XXX...X, Y Y Y...Y, and therefore also commute with ZZZ...Z. Any
other Pauli string apart from the ones in algebra does not commute either with XXX...X or Y Y Y...Y .

In order to determine the dimension of g(Heisenberg), let us decompose su(2n) = k ⊕ m with θ(g) =
XXX...X g XXX...X. Then k is the subalgebra of su(2n) consisting of all the elements in su(2n) that commute with
XXX...X. This decomposition of su(2n) is type A III, and resulting k is isomorphic to k ∼= su(2n−1)⊕ su(2n−1)⊕u(1)
[1, 2]. To have all the elements that commute both with XXX...X and Y Y Y...Y , let us further decompose k into
k = k′ ⊕m′ with the involution θ′(g) = Y Y Y...Y g Y Y Y...Y . Therefore we have

k′ = span{Pauli strings with a many X, b many Y, c many Z
∣∣a+ b, a+ c, b+ c even, a, b, c ≥ 1}. (S.7)

This decomposition does not affect u(1) component of k. It only affects su(2n−1) pieces separately, and leads to
k′ ∼= (su(2n−2) ⊕ su(2n−2) ⊕ u(1)) ⊕ (su(2n−2) ⊕ su(2n−2) ⊕ u(1)) ⊕ u(1). Therefore the dimension of k′ is |k′| =
4|su(2n−2)|+ 3 = 4n−1 − 1.

The difference between the basis of k′ and g(Heisenberg) are the elements XXX...X, Y Y Y...Y, and ZZZ...Z.
Therefore the dimension of the Heisenberg Hamiltonian algebra can be calculated as |g(Heisenberg)| = |k′| − 3 =
4n−1 − 4.

II. REVIEW OF INVOLUTION

A. Involution and Cartan Decomposition

The Cartan decomposition is defined as the split given in Def. 1, i.e. g = k ⊕ m. Finding such a split is difficult;
assigning some basis elements into k and some into m may lead to inconsistencies as we go through the basis elements
of the full algebra g.

To get around this issue we may use an involution θ, i.e. a homomorphism on g that preserves commutation
relations and satisfies θ(θ(g)) = g for all g ∈ g. This naturally splits the algebra when one considers its +1 and −1
eigen-solutions (since the square of the involution is identity, +1 and −1 are the only possibilities for eigenvalues).
Let us name pi as a +1 eigen-solutions, and ni as a −1 eigen-solutions where i = 1, 2, 3, ... such that θ(pi) = pi and
θ(ni) = −ni. Then we can see that [pi, pj ] is a +1 eigen-solution:

θ([pi, pj ]) = [θ(pi), θ(pj)] = [pi, pj ], (S.8)

[pi, nj ] is a −1 eigen-solution:

θ([pi, nj ]) = [θ(pi), θ(nj)] = [pi,−nj ] = −[pi, nj ], (S.9)



3

and [ni, nj ] is a +1 eigen-solution:

θ([ni, nj ]) = [θ(ni), θ(nj)] = [−ni,−nj ] = [ni, nj ]. (S.10)

Therefore if one defines k as the positive eigen-solution space for the involution θ and m as the negative eigen-solution
space, then the commutation relations given in Def. 1 are automatically satisfied.

B. Involution Types for su(N)

The unitary operators involved in quantum computing fall into the Lie group SU(N) which is generated by the Lie
algebra su(N), where N = 2n and n is the number of qubits. This algebra has infinitely many Cartan decompositions,
many of them are equivalent to each other after a similarity transformation. However, there are 3 different classes
of Cartan decompositions of su(N) that cannot be transformed to each other which are named as AI, AII and AIII
[3, 4]. Involutions that correspond to these (up to a similarity transformation) are as follows.

• For AI, θ(g) = −gT (In [3] this involution is given as complex conjugation rather than transpose, which is
equivalent due to the fact that all the matrices we work are Hermitian matrices in this paper.)

• For AII (only when N is even), θ(g) = −MgTM , where

M =

(
0 −IN/2

IN/2 0

)
(S.11)

and IN/2 is the N/2×N/2 identity matrix

• For AIII, θ(g) = UgU where U is a diagonal matrix that has each diagonal element to be either +1 or −1 (note
that UT = U).

C. Involution for Certain Models

Pauli matrices satisfy XT = X, Y T = −Y , ZT = Z. Using (A⊗B)T = AT ⊗BT , one finds that Pauli strings with
an even number of Y matrices satisfy σT = σ, while the ones with an odd number of Y matrices satisfy σT = −σ.
Therefore, for any Lie subalgera g ⊆ su(2n) using the involution θ(g) = −gT leads to a Cartan decomposition via
θ(k) = k, θ(m) = −m as

k = span{Pauli strings ∈ g with odd Y matrices},
m = span{Pauli strings ∈ g with even Y matrices}.

(S.12)

The XY, transverse field XY, transverse field Ising and Heisenberg models have Hamiltonians consisting only of Pauli
strings that have either 0 or 2 Y matrices, therefore satisfy θ(H) = −HT = −H, which makes θ(g) = −gT a suitable
involution to apply Theorem 1 to these models.

After the Jordan Wigner transformation, all these models fall into a fermion model that has time reversal symmetry.
The reason that the involution θ(g) = −gT work for these models can be explained by the relation between Cartan
decompositions and discrete quantum symmetries as discussed in Ref. [4]. There, it is explained that if the symmetry
is due to a unitary transformation, then corresponding involution puts anything symmetric into k. Parity in space
can be considered as one of those. However, if the symmetry is due to an anti-unitary transformation such as time
reversal, then the corresponding involution puts the symmetric element into m. Therefore it is guaranteed that there
is an involution that will put H into m if the system has time reversal symmetry.

D. Involution Search

In our algorithm, we are limiting ourselves to single Pauli strings due to circuit composition considerations. This
limits our involution pool for all AI, AII and AIII types, and leads to the following list:

1. θ(g) = −BgTB as AI, where B is a Pauli string containing even number of Y matrices,

2. θ(g) = −BgTB as AII, where B is a Pauli string containing odd number of Y matrices,

3. θ(g) = BgB as AIII, where B is a Pauli string.

One can search for B for any given Hamiltonian H to find a suitable involution satisfying θ(H) = −H.
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III. METHOD TO FIND A CARTAN SUBALGEBRA

In this work, we specifically deal with basis elements that are single Pauli strings, i.e. tensor product of n Pauli
matrices where n is the number of spins/qubits determined by the Hamiltonian. We exploit this fact while searching
for a Cartan subalgebra. Suppose m has the following basis

m = span{σ1, σ2, . . . , σ|m|}, (S.13)

where each σi is a Pauli string. We construct a list of basis elements for h in the following way: we initialize a list of
basis elements for h via picking a random basis elements from m, say σ1. Then we iterate through the basis elements
of m and append them if they commute with all the Pauli strings we have appended into the list. After a reordering
the indices, we obtain the following h without loss of generality

h = span{σ1, σ2, . . . , σ|h|}. (S.14)

With this notation, σi ∈ h if i ≤ |h| and σi 6∈ h otherwise.

Theorem III.1 The set given in Eq. (S.14) is a maximal Abelian subalgebra of m.

To prove this, we will prove the following lemma:

Lemma III.1 For j = 1, 2, . . . , |h|, define the set of non-commuting indices as

s(j) = {i | [σj , σi] 6= 0} (S.15)

Then

|h|⋃
j=1

s(j) = {i
∣∣ |h| < i ≤ |m|} = {|h|+ 1, . . . , |m|}. (S.16)

Proof: For any i, j ≤ |h|, we know that [σj , σi] = 0 because the condition to add the element in h is that it
commutes with the existing list of basis elements. This implies i 6∈ s(j) for any i, j ≤ |h|, therefore the union of s(j)
sets cannot include any integer smaller than |h|+ 1. For any i > |h|, we know that we could not add σi into h during
the construction of h. This means that for any |h| < i ≤ |m|, there exists a j ≤ |h| such that [σj , σi] 6= 0 i.e. i ∈ s(j).
Therefore union of all s(1), s(2), . . . , s(|h|) must include all positive integers from |h|+ 1 to |m|. �

Lemma III.2 For j = 1, 2, . . . , |h| and i, k = |h|+ 1, . . . , |m|, if [σj , σi] 6= 0 and [σj , σk] 6= 0, then

tr
(
[σj , σi][σj , σk]

)
= −2n+2δik (S.17)

where δik is the Kronecker delta and σi are 2n × 2n matrices.

Proof: Pauli matrices either commute or anti-commute. This extends to Pauli strings as well, because they are
tensor products of Pauli matrices. Therefore if [σj , σi] 6= 0 then [σj , σi] = 2σjσi = −2σiσj . We further observe that

tr
(
[σj , σi][σj , σk]

)
= 4 tr

(
σjσiσjσk

)
(S.18)

= −4 tr
(
σjσjσiσk

)
(S.19)

= −4 tr
(
σiσk

)
(S.20)

Now, if i 6= k i.e. σi 6= σk, then σiσk is not going to be identity: therefore it will be a tensor product of identity and
at least one Pauli matrix-matrices. Since tr(A⊗B) = tr(A) tr(B), we then have tr(σiσk) = 0 if i 6= k. In the i = k
case, tr(σiσk) = tr(1) = 2n. Therefore

tr
(
[σj , σi][σj , σk]

)
= −4× 2nδik = −2n+2δik, (S.21)

which proves the lemma. �.

Proof of Theorem III.1: h is an Abelian subalgebra of m by construction. To prove maximality, we show
that there is no other element in m, including linear combinations of Pauli strings, that commutes with all σi for

i ≤ |h|. Consider a generic element m =
∑|m|
i=1 aiσi ∈ m. Then if

[σj ,m] =

|m|∑
i=1

ai[σj , σi] = 0 (S.22)
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for all j ≤ |h|, then we get ∑
i∈s(j)

ai[σj , σi] = 0 for j = 1, 2, . . . , |h|. (S.23)

Due to orthogonality relations from Lemma III.2, we then obtain ai = 0 for all i ∈ ∪j≤|h|s(j). Due to Lemma III.1
this implies ai = 0 for all |h| < i ≤ |m|, which in turn results in

m =

|m|∑
i=1

aiσi =

|h|∑
i=1

aiσi ∈ h. (S.24)

Therefore we have proved that for any m ∈ m, if [h,m] = 0, then m ∈ h which proves maximality. �.

IV. PROOF OF THE THEOREM FOR PARAMETER OPTIMIZATION

In this section, we will point out the differences between Theorem 2 and the methods given in [5, 6]. For this, let
us start with stating the original KHK decomposition method as a theorem:

Theorem IV.1 [5, 6] For H ∈ m, define the function f

f(K) = 〈v,K†HK〉 = 〈KvK†,H〉, (S.25)

where 〈., .〉 denotes the Killing form, and v ∈ h is an element whose exponential map eitv is dense in eih. Then for
any global minimum of f(K) denoted by Kc,

K†cHKc ∈ h. (S.26)

Although it is stated that a global minimum is needed, both proofs given in [5, 6] only use the fact that the function
f has zero gradient at the global minimum, which makes the theorem work for any local extremum as well. By using
this fact, we improve the theorem by showing that the element K in the function f does not need to be parameterized
via exponential map as in [2, 6, 7] — the parametrization/coordinate system K = exp(

∑
i αiki) is used to cover the

entire Lie group eik which is not generally possible. Because we only need a local extremum, we can re-state the
theorem for a generic parameterization system as the following:

Theorem IV.2 (Improved KHK Decomposition) Assume a set of coordinates ~θ in a chart of the Lie group
exp(ik). For H ∈ m, define the function f

f(~θ) = 〈K(~θ)vK(~θ)†,H〉, (S.27)

where 〈., .〉 denotes an invariant non-degenerate bilinear form on g, and v ∈ h is an element whose exponential map eitv

is dense in eih. Then for any local extrema of f(~θ) denoted by ~θc, and defining the critical group element Kc = K(~θc),
we have

K(~θc)
†HK(~θc) = K†cHKc ∈ h. (S.28)

The motivation for this extension is to use the decoupled product form (Eq. (8) in the main text) rather than the
exponential map itself. To prove the theorem, we first provide the following definition.

Definition IV.1 Given a compact Lie algebra k and Lie group K = eik generated via the exponential map. Let

f : K → R be a smooth function. Then, if for a coordinate system ~θ in K, partial derivatives of f with respect to the
coordinates vanish at Kc ∈ K and the basis vectors at Kc covers k i.e.

∂f

∂θi

∣∣∣
Kc

= 0 for i = 1, 2, . . . , |k|, span
{
K†

∂K

∂θi

∣∣∣
Kc

}
= k, (S.29)

then we will denote this critical point Kc as a non-singular critical point in the coordinate system ~θ. In the case the

basis vectors not covering the k, we will call it a singular critical point in the coordinate system ~θ.
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The product form (Eq. (8)) might lead to coordinate singularities due to the fact that different set of coordinates
might represent the same Lie group element. Therefore, if the product form is used in Theorem IV.2, local extremum
might be a singular critical point. We provide the following lemma to cover this case as well.

Lemma IV.1 If Kc ∈ K is a singular critical point of the function f : K → R in the coordinate system ~θ, then there
exists a coordinate system ~α such that Kc is a non-singular critical point of f in the coordinates ~α.

Proof: We have

∂f

∂θi

∣∣∣
Kc

= 0 for i = 1, 2, . . . , |k| span
{
K†

∂K

∂θi

∣∣∣
Kc

}
6= k. (S.30)

Since there are |k| many coordinates, some of the basis vectors should be linearly dependent because they fail to span
k. Let us say r of them are linearly independent, where r < |k|. Without loss of generality, we can choose them to
be θ1, θ2, ..., θr. We then conclude that there are r relevant coordinates that we denote as ~η, and |k| − r irrelevant

coordinates that we denote as ~φ. That is, denoting the coordinate mapping as K(η, φ) ∈ K, the Lie group element at
the critical point Kc ∈ eik is determined by the relevant coordinates, and the irrelevant ones do not change the group

element: Kc = K(~ηc, ~φ) for any choice of ~φ. In other words, the map from this coordinate system to the Lie group
manifold is many-to-one at the critical point Kc. We will exploit the fact that the function f is a function of the
group element K. Let us calculate the gradient of f at Kc. Define a smooth curve C(λ) on the manifold C : R+ → K
such that the curve passed through at the critical point C(λ = 0) = Kc. Then gradient of f on the direction of the
curve C at λ = 0 is given by

d

dλ
f(C(λ))

∣∣∣
λ=0+

= lim
λ→0+

f(C(λ))− f(Kc)

λ
, (S.31)

which is independent of coordinate choice. To write (S.31) in ~θ coordinates, write C(λ) = K(~η(λ), ~φ(λ)). Then

C(0) = Kc implies that ~η(0) = ~ηc while ~φ(0) remains free since Kc is independent of ~φ. This leads to

d

dλ
f(C(λ))

∣∣∣
λ=0+

= lim
λ→0+

f(K(~η(λ), ~φ(λ)))− f(K(~ηc, ~φ))

λ
. (S.32)

Since Kc does not depend on ~φ, we can then write

d

dλ
f(C(λ))

∣∣∣
λ=0+

= lim
λ→0+

f(K(~η(λ), ~φ(λ)))− f(K(~ηc, ~φ(λ)))

λ
(S.33)

=

r∑
i=1

∂f

∂ηi

dηi
dλ

∣∣∣
λ=0+

=

r∑
i=1

∂f

∂θi

dθi
dλ

∣∣∣
λ=0+

= 0 (S.34)

for any curve C. Let us choose a new set of coordinates

K̃(~α) = Kce
i
∑

i αiki , (S.35)

and rewrite (S.31) with ~α coordinates with Kc = K̃(~α = ~0) and C(λ) = K̃(~α(λ)):

0 =
d

dλ
f(C(λ))

∣∣∣
λ=0+

= lim
λ→0+

f(K̃(~α(λ)))− f(K̃(~0))

λ
(S.36)

=

|k|∑
i=1

∂f

∂αi

dαi
dλ

∣∣∣
λ=0+

. (S.37)

Since the curve C(λ) is arbitrary, dαi

dλ

∣∣
0+

are arbitrary values, which yields

∂f

∂αi

∣∣∣
Kc

= 0, for i = 1, 2, . . . , |k|. (S.38)

Therefore, Kc is a critical point in the ~α coordinates as well. Now let us show that the basis vectors generated by ~α
coordinates will span k. At K = Kc, one can easily see that

K†
∂K

∂αi

∣∣∣
Kc

= K†c lim
λ→0

Kce
iλki −Kc

λ
= ki, (S.39)
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which yields

span
{
K†

∂K

∂αi

∣∣∣
Kc

}
= span

{
ki

}
= k (S.40)

Therefore, Kc is a non-singular critical point in the ~α coordinates, which proves the lemma. �

Proof of Theorem IV.2: Let us calculate the partial derivatives of f with respect to θi:

∂f(~θ)

∂θi
=

〈
∂K

∂θi
vK†,H

〉
+

〈
Kv

∂K†

∂θi
,H
〉

=

〈
∂K

∂θi
vK†,H

〉
−
〈
KvK†

∂K

∂θi
K†,H

〉
=

〈
KK†

∂K

∂θi
vK†,H

〉
−
〈
KvK†

∂K

∂θi
K†,H

〉
=

〈
K
[
K†

∂K

∂θi
, v
]
K†,H

〉
(S.41)

Using similarity transformation invariance of the bilinear form, we can shift K(...)K† to the right

∂f(K)

∂θi
=

〈[
K†

∂K

∂θi
, v
]
,K†HK

〉
(S.42)

Now, we can rewrite this as

∂f(K)

∂θi
=− i ∂

∂t

〈
e−itvK†

∂K

∂θi
eitv,K†HK

〉 ∣∣∣
t=0

=− i ∂
∂t

〈
K†

∂K

∂θi
, eitvK†HKe−itv

〉 ∣∣∣
t=0

=

〈
K†

∂K

∂θi
, [v,K†HK]

〉 (S.43)

Therefore, at the critical point K = Kc 〈
K†

∂K

∂θi

∣∣∣
Kc

, [v,K†cHKc]

〉
= 0. (S.44)

We know that H, v ∈ m and Kc ∈ eik. Therefore by the definition of Cartan decomposition (Def. 1 in the main
text), KcHK†c ∈ m and [v,K†cHKc] ∈ k. (S.43) is satisfied for all i = 1, 2, . . . , |k|. By the Lemma IV.1, without loss

of generality, we can simply assume that K† ∂K∂θi

∣∣∣
Kc

span k. Then due to non-degeneracy of the bilinear form, (S.43)

yields

[v,K†cHKc] = 0 (S.45)

which also means

[eitv,K†cHKc] = 0. (S.46)

The exponential map of v is dense in eih, i.e. for any element eih chosen in the group eih, the line eitv passes through
a point that is arbitrarily close to the element eih. This with (S.46) means that K†HK commutes with any element
in h. Since h is the maximal Abelian Lie algebra in m, this implies that K†HK ∈ h. �.

We then conclude that the method given in Refs. [5, 6] does not require us to minimize the function f . It requires
us to find a local extremum. In addition, this gives us flexibility in how to represent the element K in Theorem IV.2.
This additional property will be exploited in the next section.
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V. PRODUCT ANZATS FOR K

In contrast to other works using Cartan decomposition [2, 6, 7] that represent an element K ∈ eik as K =
exp(

∑
i αiki), where ki is the ith basis element of k, we use the following product representation:

K(~θ) =
∏
i

eiθiki , (S.47)

For example, for k = su(2), this product would be

K(a, b, c) = eiaXeibY eicZ . (S.48)

The product expansion (S.47) is extremely beneficial when the basis elements ki are Pauli strings, because it can
then be directly implemented in a quantum computer and we only need to find the parameters θi to generate the
circuit. In [7], Cartan decomposition is applied recursively because the expression K = exp(

∑
i αiki) cannot be

implemented on a quantum device, which is the unitary synthesis problem that we try to solve for Hamiltonian
evolution in the first place. A second benefit of this expression comes from the optimization: as explained in the next
section, (S.47) allows us to calculate f(K) and its gradient with a greater accuracy.

The product expansion (S.47) does not cover the Lie group eik except special cases such as k being Abelian or
solvable [8]. However, it is a good parametrization that can be used in the theorem. To show that, let us first notice
that the (S.47) is differentiable. Secondly, let us show that (S.47) covers a |k| dimensional subspace of eik. For this,

observe that near identity K(~θ = 0) = I (S.47) can be expanded as

K(~θ) = I +
∑
i

θiki +O(θ2), (S.49)

Since each ki are basis elements of k, it is obvious that the equation above covers |k| dimensional neighborhood of the
identity element. Considering the continuity and the differentiability of the parametrization (S.47), we can therefore
easily conclude that it covers a |k| dimensional subspace of the Lie group eik. Therefore this parametrization can be

used in Theorem IV.2. Now let us show that the f(~θ) = f(K(~θ)) has a local extremum. For our specific case, we
pick our basis elements from single Pauli strings. In this case

eiθiki = cos θiI + i sin θi ki, (S.50)

Therefore f(~θ) is a periodic function on all its variables. Since it is also differentiable, it should have a local extremum
within a period. Therefore by using the product expansion, we are guaranteed to find a local extremum and therefore
find a solution to our decomposition.

VI. TIME COMPLEXITY FOR PARAMETER OPTIMIZATION

A. Cost function evaluation

To perform the optimization, we need to calculate f(K) =
〈
KvK†,H

〉
given in Theorem IV.2 (Theorem 2 in the

main text) where H ∈ m, K ∈ eik and v is an element in h whose exponential map eitv is dense in eih. h is an Abelian
Lie algebra and in this work, basis elements of h are single Pauli strings. Therefore the parameter space for the group
eih is 2π periodic on all parameters, meaning that it is a |h| dimensional torus. If one chooses v as a1h1 + a2h2 + ...
where ai are mutually irrational to each other, then the line eitv will be dense in eih. Therefore we use v =

∑
i γ

ihi
where γ is a transcendental number to ensure that any power γi is irrational.

We represent K with the following product of exponentials

K =
∏
i

eiθiki , (S.51)

where ki form a basis for k. Using the fact that Killing form
〈
A,B

〉
in su(2n) is proportional to tr(AB) where tr is

the matrix trace, and therefore it is a non-degenerate invariant bilinear form in g(H) ⊂ su(2n), we can replace 〈A,B〉
in the function with tr(AB). Then we find

f(K) = tr
(∏
i↑

eiθiki v
∏
i↓

e−iθiki H
)
, (S.52)
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where ↑ (↓) under the product means multiplication in an increasing (decreasing) order for i. Efficient calculation
of this product is non-trivial because the products of these exponentials generally will not be in g, and thus may
generate an arbitrary matrix in GL(2n) and therefore require an exponential amount of calculation. One fact that
can be used is that if K ∈ eik and m ∈ m, then we have KmK† ∈ m. Thus, if each exponential on both sides of v in
(S.52) is applied on v, one from each side at the same time (a similarity transformation), the result will always be in
m. To apply the exponentials of ki, one can take advantage of the fact that ki are Pauli strings, therefore k2i = I and

eiθiki = cos θi I + i sin θi ki. (S.53)

This allows us to apply one similarity transformation on one term in v via constant amount of calculations only
requires a constant amount of calculations. After applying all exponentials to v,

f(K) = tr
(
m0H

)
(S.54)

is obtained, where

m0 =
∏
i↑

eiθiki v
∏
i↓

e−iθiki ∈ m. (S.55)

Up to this point, in the worst case only O(|k||m|) many operations are performed. |k|-many exponentials are applied to
an element of m, which has at most |m| many Pauli terms. Multiplying m0 and H requires O(|m|) many calculations
and can be neglected in the |k| � 1 limit corresponding to large system size limit, which leads to O(|k||m|) time
complexity to calculate f(K).

B. Gradient evaluation

The gradient of K given in (S.51) can be expressed as

∂K

∂θj
=
∏
i<j,↑

eiθikiikj
∏
i≥j,↑

eiθiki , (S.56)

leading to the analytical expression for the gradient of the function (S.52):

∂f(K)

∂θj
= tr

( ∏
i<j,↑

eiθikiikj
∏
i≥j,↑

eiθiki v
∏
i↓

e−iθiki H
)

+ tr
(∏
i↑

eiθiki v
∏
i≥j,↓

eiθiki(−i)kj
∏
i<j,↓

e−iθiki H
)
.

(S.57)

Using the cyclic property of trace tr(AB) = tr(BA) leads to

∂f(K)

∂θj
=i tr

(
kj
∏
i≥j,↑

eiθiki v
∏
i↓

e−iθiki H
∏
i<j,↑

eiθiki
)

−i tr
( ∏
i<j,↓

e−iθiki H
∏
i↑

eiθiki v
∏
i≥j,↓

eiθiki kj

) (S.58)

Applying the exponentials one by one from both sides of v and H, we obtain

∂f(K)

∂θj
= i tr

(
kj m1 e

−iθjkj m2

)
− i tr

(
m2 e

iθjkj m1 kj

)
. (S.59)

where

m1 =
∏
i≥j,↑

eiθiki v
∏
i≥j↓

e−iθiki ∈ m

m2 =
∏
i<j↓

e−iθiki H
∏
i<j,↑

eiθiki ∈ m.
(S.60)

As in the calculation of f(K), reaching that point costs O(|k||m|) amount of time and in the |k| � 1 limit corresponding
to large system size limit, it is the most time consuming part compared to the last calculation of trace which takes
O(|m|) time as above. However, this complexity is to obtain just one derivative. To calculate the full gradient, one
has to perform this for all θj , and therefore the complexity of calculating the entire gradient is O(|k|2|m|).
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C. Obtaining h ∈ h

After finding Kc ∈ eik that locally extremizes f(K), one can obtain h ∈ h via the following (also Eq. (7) in the
main text):

h = K†cHKc ∈ h. (S.61)

Using the product form of Kc, one finds

h =
∏
i↓

e−iθiki H
∏
i↑

eiθiki . (S.62)

As discussed in the previous sections, the similarity transformations from each single Pauli exponential eiθiki can be
applied one by one with analytical precision via (S.53), and since H ∈ m, the terms generated after each similarity
transformation are also in m. This leads to O(|k||m|) complexity, just as for the calculation of f(K).

VII. 2 SITE TFIM PARAMETER FIT

As given in Fig. 2, the 2 site transverse field Ising model, H = ZZ +B1IX +B2XI, has the following Hamiltonian
algebra

g(H) = span{XI, IX,ZZ, Y Y, Y Z,ZY }, (S.63)

and the following Cartan decomposition and Cartan subalgebra are used

k = span{Y Z,ZY },
m = span{XI, IX,ZZ, Y Y },
h = span{XI, IX}.

(S.64)

By defining v = IX + γXI, with γ an arbitrary transcendental constant, and K = eiaY ZeibZY , the cost function (7)
can be calculated as

f(a, b) = tr
(
eiaY ZeibZY (IX + γXI)e−ibZY e−iaY ZH

)
=(B1 + γB2) cos 2a cos 2b− (B2 + γB1) sin 2a sin 2b+ cos 2a sin 2b+ γ sin 2a cos 2b.

(S.65)

To find a local extremum, we set ∂f/∂a = ∂f/∂b = 0, which yields

tan(2a+ 2b) =
1

B1 +B2
,

tan(2a− 2b) =
1

B2 −B1
,

(S.66)

and are solved by

a =
1

4
arctan

( 1

B1 +B2

)
− 1

4
arctan

( 1

B1 −B2

)
,

b =
1

4
arctan

( 1

B1 +B2

)
+

1

4
arctan

( 1

B1 −B2

)
.

(S.67)

Plugging this in K†HK, one finds

K†HK =e−ibZY e−iaY ZHeiaY ZeibZY

=IX
( (B1 +B2)2 − 1

2
√

1 + (B1 +B2)2
− (B1 −B2)2 − 1

2
√

1 + (B1 −B2)2

)
+XI

( (B1 +B2)2 − 1

2
√

1 + (B1 +B2)2
+

(B1 −B2)2 − 1

2
√

1 + (B1 −B2)2

)
=c IX + d XI ∈ h.

(S.68)

With this, we have H = K(cIX + dXI)K†, which is the desired relationship.
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VIII. CIRCUIT OPTIMIZATION FOR TFXY MODEL

In this section, we outline several circuit optimizations which we apply to the free-fermionizable model discussed in
the main text.

Consider an n-qubit circuit. We establish the following Lemma:

Lemma VIII.1 For any i, j = 1, 2, ..., n− 1, i < j and any α, β ∈ R, there exist a, b, c ∈ R such that

eiαŶiXjeiβŶiXj+1 = eiaŶjXj+1eibŶiXjeicŶjXj+1 (S.69)

where the “hat” notation is defined in Eq. 12. The same is true for X ↔ Y .

To prove this, observe that the algebra generated by the exponents of the left hand side is a representation of su(2):

[ŶiXj+1, ŶiXj ] = 2i ŶjXj+1

[ŶjXj+1, ŶiXj+1] = 2i ŶiXj

[ŶiXj , ŶjXj+1] = 2i ŶiXj+1

(S.70)

Thus, (S.69) is an Euler decomposition of a su(2) spanned by the Pauli strings. The version with X ↔ Y is also true
for the same reason.

FIG. S1. Graphical representation of Lemma VIII.1 for i = 1, j = 4.

Using the arrow notation introduced in Fig. 3, a graphical representation of Lemma VIII.1 can be given as Fig. S1.
Next, we apply this Lemma to an ordered product of exponentials as is used in Eqs. (S.52) and (S.56).

Theorem VIII.1 We define a “triangle” of size i as

Ti(~α) =

i∏
j=1

eiαj Ŷ1Xj (S.71)

and

Zp,q(~α) =

q∏
j=p

eiαj ŶjXj+1 (S.72)

which will be denoted as “zig” if p > q and “zag” if p < q. Then for i ≥ 3, there exists a new set of parameters
~a, b, c ∈ R such that

Ti(~α) = eibŶj−1XjTi−1(~a)eicŶj−1Xj (S.73)

and this implies for a new set of parameters ~β, ~θ ∈ R, the “triangle” Ti(~α) can be written as a “zigzag”

Ti(~α) =

1∏
j=i−1,↓

eiβj ŶjXj+1

i−1∏
j=1

eiθj ŶjXj+1

= Zi−1,1(~β)Z2,i−1(~θ).

(S.74)
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To prove this, we first observe that

Ti(~α) =

i∏
j=1

eiαj Ŷ1Xj

=

(
i−2∏
j=1

eiαj Ŷ1Xj

)
eiαi−1Ŷ1Xi−1eiαiŶ1Xi .

(S.75)

Using Lemma VIII.1 on the last two exponentials, and renaming new parameters:

Ti(~α) =

(
i−2∏
j=1

eiaj Ŷ1Xj

)
eibŶi−1Xieiai−1Ŷ1Xi−1eicŶi−1Xi

= eibŶi−1Xi

(
i−2∏
j=1

eiaj Ŷ1Xj

)
eiai−1Ŷ1Xi−1eicŶi−1Xi

= eibŶi−1Xi

(
i−1∏
j=1

eiaj Ŷ1Xj

)
eicŶi−1Xi

= eibŶi−1XiTi−1(~a)eicŶi−1Xi ,

(S.76)

which is just equation (S.73). Recursively iterating this a total of i− 1 times, results in Eq. (S.74). In the graphical
representation, this recursion is easy to see as shown in Fig. S2.

FIG. S2. Graphical representation of Theorem VIII.1 for i = 5.

Considering the fact that the original circuit is a product of triangles, we now show that it can be written as a series
of zigzags schematically depicted in Fig. S3. This greatly reduces the complexity of the circuit because the initial
circuit given on the left has O(n3) CNOT gates, whereas the simplified zigzag circuit has only O(n2) CNOT gates.
However, this circuit can be simplified further.

FIG. S3. First simplification of the initial circuit for K.

Lemma VIII.2 Any zigzag can be flipped into a “zagzig”, i.e. for any i ≥ 2 and any set of parameters αj , βj ∈ R,

there exists ~a,~b ∈ R such that

Zi,1(~α)Z2,i(~β) = Z1,i(~a)Zi−1,1(~b) (S.77)

The proof is by induction. The base case is for zigzags with size i = 2, because Ŷ2X3, Ŷ1X2, Ŷ1X3 forms a
representation of su(2) and it is established by using the Euler decomposition in the following two ways:

eiaŶ1X2eibŶ2X3eicŶ1X2 = eiαŶ2X3eiβŶ1X2eiθŶ2X3 . (S.78)
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This is precisely the i = 2 case of the lemma. Now we assume that it also holds for all zigzags up to size N . Then for
i = N + 1, we have that

ZN+1,1(~α)Z2,N+1(~β) =ZN+1,3(~α)
(
eiα2Ŷ2X3eiα1Ŷ1X2eiβ2Ŷ2X3

)
Z3,N+1(~β) (S.79)

The product in parentheses is our base case shown in Eq. (S.78). Therefore, for some a, b, c ∈ R, we have that

ZN+1,1(~α)Z2,N+1(~β) =ZN+1,3(~α)
(
eiaŶ1X2eibŶ2X3eicŶ1X2

)
Z3,N+1(~β)

=eiaŶ1X2

(
ZN+1,3(~α) eibŶ2X3Z3,N+1(~β)

)
eicŶ1X2 .

(S.80)

Note that the expression inside the parentheses on the last line is a zigzag with size N , that runs between sites 2 and
N + 1. Therefore it can be flipped by the induction hypothesis. After renaming the parameters a→ a1 and c→ c1,
we obtain

ZN+1,1(~α)Z2,N+1(~β) =eia1Ŷ1X2

(
Z2,N+1(~a)ZN,2(~b)

)
eicŶ1X2

=Z1,N+1(~a)ZN,1(~b),
(S.81)

which proves the induction step. This completes the proof of Lemma VIII.2. A graphical representation is given in
Fig. S4.

FIG. S4. Graphical representation of Lemma VIII.2 for i = 5.

Theorem VIII.2 The zigzag circuit given for K can be simplified into a more compact multiplications of “zigs”, i.e.

for every n ≥ m+ 1, ~αi, ~βi ∈ R there exist a set of ~θi ∈ R, such that

n−1∏
i=m

(
Zn,i(~αi)Zi+1,n(~βi)

)
=

n∏
i=m

Zn,i(~θi). (S.82)

For convenience, the parameters will not be shown explicitly for this proof i.e. Zn,m(~α) will be written as Zn,m,
since the parameters are not determined explicitly in the argument. The proof is again by induction. The base case
is for n−m = 1 since both sides become Zm+1,mZm,m. Now, assume that the induction step holds for all n−m up
to n−m = N ≥ 1. We will next establish that it holds for n−m = N + 1. First, define N ′ = N +m+ 1 and then
regroup the product to obtain

N ′−1∏
i=m

(
ZN ′,iZi+1,N ′

)
= ZN ′,m

N ′−1∏
i=m+1

(
Zi,N ′ZN ′,i

)
ZN ′,N ′ . (S.83)

Since N ′ > i, Zi,N ′ZN ′,i, the product of terms in the parenthesis can be rewritten as Zi,N ′ZN ′−1,i, yielding

= ZN ′,m

N ′−1∏
i=m+1

(
Zi,N ′ZN ′−1,i

)
ZN ′,N ′ . (S.84)

Using Lemma VIII.2 for the expression in the product, we find that the product becomes

=ZN ′,m

N ′−1∏
i=m+1

(
ZN ′,iZi+1,N ′

)
ZN ′,N ′

=ZN ′,m

N ′−1∏
i=m+1

(
ZN ′,iZi,N ′

)
.

(S.85)



14

In the last step, we used the fact that the last term in the product in the middle is ZN ′,N ′ and therefore can be
absorbed into the term after the product by redefining its coefficient in the exponent.

Note that the product term to the right is part of the induction hypothesis for n−m = N . Applying the induction
hypothesis gives us

=ZN ′,m

N ′∏
i=m+1

(
ZN ′,i

)
=

N ′∏
i=m

(
ZN ′,i

)
,

(S.86)

which proves the induction step, and establishes the theorem. A graphical representation is given in Fig. S5.

FIG. S5. Graphical representation of theorem VIII.2 for n = 4 and m = 1.

Using these results, we find that the red part of the original K circuit, given in the left side of Fig. S3. can be
rewritten as the circuit on right shown in Fig. S4. Considering that all the down red arrows commute with all the up
green arrows, we can move greens through the reds and arrive at the simplification shown in Fig. S6.

FIG. S6. Simplification of K circuit for Transverse Field XY model for 5 spins.

As shown in Fig. 3(a), an arrow with length a, i. e., the circuit for exp(iθX̂iY i+a) (or the same circuit, but with
X ↔ Y ), has 2a CNOT gates in it. Therefore, the number of CNOT gates in the circuit on the left of Fig. S6 satisfies

#CNOTs for raw K = (red part) + (green part) = 2

n−1∑
p=1

p∑
q=1

(2q) = 2

n−1∑
p=1

p(p+ 1) =
2n(n2 − 1)

3
. (S.87)

On the other hand, the optimized circuit for n spins consists pairs of length one red arrows followed by length one

green arrows, that is exp(iθŶiXi+1) exp(iφX̂iY i+1). A circuit for this pair requires only 2 CNOTs [9]. Therefore, the
total CNOT count of the simplified circuit on the left of Fig. S6 is reduced to only the following:

#CNOTs for simplified K =

n−1∑
p=1

(2p) = n(n− 1). (S.88)

The full circuit consists of one factor of K, one factor of exp(−ith) and one factor of K†, as given in Fig. 2(b). Using
the Cartan subalgebra given in (11), we see that exp(−ith) does not require any CNOT gates. Hence, the complete
time-evolution circuit of U(t) = Kexp(−ith)K† has twice as many CNOTs as the circuit for one K has. Therefore,
the non-optimized circuit for time evolution has 2n(n2 − 1)/3 CNOTs, whereas the optimized one has only 2n(n− 1)
CNOTs.
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