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Kübra Yeter-Aydeniz
Emerging Technologies and Physical Sciences Department,
The MITRE Corporation, McLean, VA, 22102-7539 USA

Luning Zhao
IonQ Inc,

4505 Campus Dr, College Park, MD 20740, USA

Nouamane Laanait
Carelon Digital Platforms, Atlanta GA, USA

Harrison Cooley
Department of Physics Georgetown University,

Washington DC, USA

Muhun Kang
Department of Physics Cornell University, Ithaca NY, USA

George Barron, and Sophia Economou
Department of Physics Virginia Tech,

Blacksburg VA, USA

Akhil Francis, and Alexander Kemper
Department of Physics North Carolina State University,

Durham NC, USA

Abstract—We present proof of principle results for evaluating
an entanglement volumetric benchmark [1] on trapped ion plat-
forms. The benchmark quantifies the robustness of multipartite
and bipartite entanglement using stabilizer measurements and
witness functions. Each n-qubit graph state is prepared and
used to evaluate n state-specific stabilizer strings. These stabilizer
measurements are used to evaluate entanglement witness func-
tions. The entanglement benchmark defines families of graph
states associated with an initial sub-graph of the hardware qubit
connectivity – with all-to-all connectivity, trapped ion systems
provide a flexibility in the choice of this initial graph, and this
will affect the associated family. In this work we present results
targeting several classes of entangled states: 1)1-D cluster states,
2) n-qubit GHZ states, and 3) cycle graph states. These states have
been found in the literature as standard hardware benchmarks,
and have connections to many near-term applications.

Index Terms—quantum benchmarking

I. INTRODUCTION

Entanglement encompasses non-local correlation that pro-
vides an indication of non-classical behavior. It is a valuable
resource in quantum sensing, metrology and networking [2]
and there are several well-established entangled resource states
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of use in measurement-based computing [3]. Overall, prepar-
ing (and verifying) large-scale entangled states is a hardware
benchmark that can be used on different noisy intermediate
scale quantum (NISQ) platforms (superconducting qubits,
trapped ions, photonics) [4]–[6].

Recently, we introduced a volumetric benchmark based on
the generation of entanglement in n-qubit states [1]. Volu-
metric benchmarks are a hardware characterization framework
that assign a score to hardware based on evaluating a fixed
metric, across an ensemble of quantum states. The metric
leverages specific properties of unweihgted graph states: local
complementation of graphs and efficient state characterization
via entanglement witnesses [7]–[9]. Local complementations
are simple transformations can be applied to the graph, and the
associated graph state circuit to generate a family of entangled
states. Graph states are commonly utilized in many NISQ
applications, for variational ansatz, they are also encountered
in proofs for quantum advantage [10], and can serve as an
algorithmic primitive particularly for optimization [11]. In
this paper we report the performance of trapped ions on the
volumetric benchmark introduced in [1].

II. METHODS

A. Volumetric Benchmarking

Unweighted graph states provide us a flexible and extensible
means of generating families of entangled states which also
provides insight into the hardware capabilities. The benchmark
is evaluated by generating multiple related graph states on



NISQ hardware, measuring the appropriate witness functions,
and determining the treewidth or circuit length at which
genuine entanglement cannot be verified. The results reported
in [1] used superconducting qubits and a large number of
randomly sampled graphs. In this section will describe the ele-
ments of the volumetric benchmark, and highlight differences
in how experiments are executed on cloud-accessed trapped-
ion hardware and how the metric is reported.

Volumetric benchmarking is used to define a general score
for hardware based off of the evaluation of a family of circuits
with varying width and secondary characteristic (commonly
circuit depth). This benchmark uses graph state circuits of
varying width, and the secondary characteristic is the graph
state’s associated treewidth. From these two quantities, we
defined the robust entanglement score (RES) as a hardware
characteristic defined by the graph state with maximum circuit
width and treewidth that can be prepared and in which
genuine entanglement can be verified. Additionally, the score
is distinguished between the naı̈ve construction and the uni-
tary construction. The RES score associated with the naı̈ve
construction (RES-N) is the n-qubit graph with the largest
treewidth that can be constructed directly from the graph’s
edge set. The RES score associated with the unitary con-
struction (RES-U) is the n-qubit graph state with the largest
treewidth that can be generated from another graph in the orbit.

A given NISQ device is characterized by the connectivity
between qubits, the qubit design and the hardware noise. When
using trapped ions, the general execution of the benchmark
remains the same: the construction of graph states, and the
evaluation of witness functions.

B. Graph state construction

An unweighted graph state is defined by an undirected,
simple graph G(V,E). Given a graph G, a graph state is
prepared as follows: the vertex set V (G) are the physical
qubits in the state and the edge set E(G) defines the set of
entangling operations. The state |ψG⟩ = |i, s⟩ prepared on a n-
qubit register initialized as |+⟩⊗n and then the set of two-qubit
entangling operations are implemented by applying control-Z
gates along the pairs of qubits (vertices) connected by edges,
eij ∈ E(G).

The graph G is stored as a NetworkX object. The two-qubit
gates are added to the circuit by iterating over the associated
edge list of the NetworkX graph object. The orientation and
ordering of the two-qubit gates is defined by the ordering of the
edge set. There are multiple ways of implementing controlled
rotation gates on NISQ hardware, we follow the decomposition
used previously in [12]: each control Z gate is decomposed
into a CNOT gate and two Hadamard gates acting on the target
qubit. Overall, the set of control-Z gates commute, and the
unitaries are symmetric if the original graph is un-directed
[13]. The ordering of the gate orientation does not affect the
final graph state and the performance can be improved through
optimal gate scheduling. However, in these initial proof of
principle results the graph state construction is not optimized

in minimizing the number of clock time steps, the gate layout
does not schedule gates to reduce gate depth.

C. Entanglement Witnesses

Unweighted graph states are stabilizer states and G(V,E)
is also used in the verification of multipartite entanglement
using witness functions. For each vertex in vk ∈ V (G) there
is an associated generator constructed from the Pauli Z,X
operators,

g
(G)
k = X(k)

∏
l→k

Z(l), (1)

where l → k denotes the product over all neighbors of vertex
(k). For vertices that are not neighbors of (k) an identity
operator is inserted. Each n-qubit graph state has n generators.
These Pauli strings are measured and their expectation values
are used to compute the entanglement witness function. The
genuine entanglement witness operator WG can be constructed
using all generators:

WG = (n− 1)1−
∑
k

gGk . (2)

These measurements are done serially by preparing the graph
state and measuring each individual Pauli string.

The witness function is lower bounded (ideal value) by −1,
and W < 0 indicates the presence of entanglement. For the
upper bound we use the fully decohered state as a comparison
point – in which case each generator gi → 0. Then the genuine
witness is upper bounded by (n− 1).

D. LC equivalence

(a)

(b)

(c)

Fig. 1. Examples of how the local complement generates different graph
orbits dependent on the starting graph. In each figure the local complement is
defined at each step using the vertex highlighted in red. (a) Samples generated
from the graph orbit of a linear cluster state Cl(n = 4). (b) The exact graph
orbit of the clique graph K(n = 4). (c) Samples generated from the graph
orbit of a cycle graph R(n = 5).

Evaluating the benchmark uses samples from a finite set of
graphs related to a chosen initial graph G. This set of graphs
are defined by local complement operations (LC). The LC of
a graph G is implemented at a vertex vi ∈ V (G) and uses the
edge set of the neighborhood graph N(vi). The complement of
the neighborhood graph N ′(vi) is used to define G′ = G

⋃
N ′.



An example of LC operation on different graphs is shown in
Fig. (1).

The first approach to using this transformation is to redefine
UG. The LC operation is applied to the underlying graph, and
the resulting graph G′, is then used to construct the graph
state circuit. This method of modifying the underlying graph
may lead to graph state circuits with two qubit gates that do
not embed onto the hardware with minimal overhead. As a
result this method may incur additional noise and overhead in
the form of swap gates, but the definition of the stabilizer
strings S ′

X will only use the measurement settings X,Z.
However, this is not a primary concern when evaluating the
benchmark on trapped ions these platforms can support all-to-
all connectivity.

LC equivalent states can be implemented using local Clif-
ford gate [13], [14]. The LC operation modifies the graph
state circuit UG → U ′

G′ and also modifies the stabilizer strings
MS → MLC(S). Graphs related by LC transformations
correspond to graph states that are in the same equivalence
class defined by local unitary operations (LU). These states
are different, |G⟩ ≠ |G′⟩, but both have the same degree of
entanglement [13], [14]. This method of using local Clifford
gates to implement LC operations keeps the number of two-
qubit gates minimal but the translation of the Pauli strings may
require additional measurement settings (X,Y, Z).
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Fig. 2. Scaling of the set of LU equivalent, but not isomorphic graphs for
the linear cluster state (Cl(n)), the cycle graph R(n), and the clique graph
K(n).

E. Data Collection on Trapped Ions

The majority of experiments were conducted on the trapped
ion platform Harmony. The data was collected intermittently
from May 2021 through July 2022. The Harmony platform
consists of 13 171Yb+ ions which are aligned to form a linear
crystal with spacing of about 4µm and suspended in a chip
trap with a radial pseudo-potential frequency of ≈ 3.1MHz.
It offers all-to-all connectivity between 11-qubits [15], [16].
11 out of 13 total qubits are utilized as computational qubits
and the two end ions were used to provide a more uniform
spacing of the central 11 ions. A second set of experiments
were executed on the Aria platform in August 2022. The Aria
platform offers all-to-all connectivity between 23-qubits. For

both platforms IonQ reports an average single-qubit, two-qubit
fidelities, and SPAM errors since the calibration is conducted
constantly. The Aria system has much higher single- and two-
qubit gate fidelities compared with the Harmony system.

The data collection on the trapped ion platform was can
be summarized as follows. The experiments were conducted
using n = 3 − −7, qubits. Each circuit was sample using
Nshots = 1024shots on Harmony and Nshots = 8192 shots on
Aria.

The different initial graph states that were used: a n−qubit
linear cluster state (a Cl(4) qubit example is shown in Fig. 1),
or a n−qubit cycle graph state, a n-qubit star graph, or the
n−qubit clique (a n = 4 qubit example is demonstrated in
Fig. 3). Circuit batching was not used to gather data therefore,
each experiment is conducted independently.

The Qiskit-IonQ Provider was used to access the IonQ
platforms. This provider provides the opportunity to use IBM’s
Qiskit programming language construct circuits that will be
deployed on IonQ’s hardware. The state preparation circuit
is constructed in Qiskit then translated into instructions
for execution on IonQ hardware through the qiskit-ionq
plugin which implements IonQ’s transpilation and compilation
pipeline.

𝑡𝑤 = 1

𝑡𝑤 = 2

𝑡𝑤 = 𝑛 − 1

Fig. 3. Examples of graphs with n ≤ 5 vertices and their treewidths. Tree
graphs have tw = 1, cycle graphs have tw = 2, cliques have tw = (n− 1).
Enumeration of graph examples is not exhaustive.

The single-qubit gates used in IonQ hardware are GPI gate,
GPI2 gate and GZ gate which are defined as

GPI(ϕ) =

(
0 e−iϕ

eiϕ 0

)
,

GPI2(ϕ) =
1√
2

(
1 −ie−iϕ

−ieiϕ 1

)
,

GZ(θ) =

(
e−iθ/2 0

0 eiθ/2

)
.

The two-qubit entangling gate used on trapped ion platforms
is the Mølmer-Sørenson gate which is defined as

MS =
1√
2


1 0 0 −i
0 1 −i 0
0 −i 1 0
−i 0 0 1

 . (3)

The transpilation into IonQ basis gate sets is optimized
to use the smallest set of laser pulses and the experiment



TABLE I
MINIMUM GENUINE WITNESS FOR CL(N) AND R(N) INITIAL STATE

EVALUATED ON HARMONY. CL(N) DATA COLLECTED MAY 2021 AND
OCTOBER 2021, R(N) DATA COLLECTED MAY 2021.

Genuine (Cl(n)), n < 7
N 3 4 5 6
tw 1 1 1 1
WG −0.804 −0.767 −0.564 −0.484

Genuine (R(n)), n < 7
N 3 −− 5 6
tw 2 −− 2 2
WG −0.818 −0.558 −0.28

is execute onto the ideal ions and gates as determined by
up-to-the minute calibrations. Because of this optimization
process readout error correction was not implemented in the
experiments.

III. RESULTS

We separate the results according to the different intial states
used: linear cluster state Cl(n), cycle graphs R(n), and GHZ
states (i.e. the clique graph) K(n). We report the minimum
value of the genuine witness functions for each graph in the
following table. From Figs. 1 and 3 we highlight that with 3
qubits, the graph orbit of (Cl(n)), (K(n)) and (R(n)) are the
same, there are only 2 unique graphs.

A. Cl(n) and R(n) States

In this section we present results for the linear cluster state
(Cl(n), tw = 1) and for the n-qubit cycle graph state (R(n),
tw = 2). While the 4-qubit cycle appears in the orbit of
Cl(n=4), the orientation of the vertices are twisted and only
the explicit constructions of the n-qubit cycle graph states
with n = 5, 6 were tested. As shown in Fig. 2 the size of
the graph orbit (number of LU equivalent, but non-isomorphic
graphs) grows quickly with the graph order. Additionally, as
graph orbits do not intersect or share graphs, we know that the
largest treewidth found in the linear cluster state orbit cannot
exceed tw = (n − 2). Using the Cl(n) state will test graphs
with minimal treewidth (the initial Cl(n) state), and graphs of
possible treewidths up to tw = (n− 2).

B. GHZ States

In this section we present two sets of results for the GHZ
state orbit. The first set of results were evaluated on the
Harmony device using cloud-based queue access. The second
set of results were evaluated on the Aria device using dedicated
access. We first report the genuine witness values for preparing
individual graph states. Then we present results on the genuine
witness values under the effect of LU transformations. The
transformations modify the graph state, and also translate the
stabilizer strings.

As shown in Fig. 1 the graph orbit of the clique graph
consists of the clique graph and a star graph – the GHZ state
maps onto the star graph representation. As shown in Fig. 3,
the star graph has (tw = 1) and the clique graph has tw =
(n−1). Thus using the GHZ state will test the extreme limits

TABLE II
GENUINE WITNESS FOR INITIAL STATES IN THE GHZ GRAPH ORBIT

EVALUATED ON HARMONY. DATA COLLECTED AUGUST 2021.

Genuine (K(n)), n < 7
N 3 4 5 6
tw 2 3 4 5
WG −0.818 −0.330 2.000 1.309
N 3 4 5 6
tw 1 1 1 1
WG −0.804 −0.592 2.361 1.543

Genuine (K(n)), n = 7 Genuine (Sk), n = 7
N 7 7
tw 6 1
WG 2.147 −0.463

TABLE III
GENUINE WITNESS FOR INITIAL STATES IN THE GHZ GRAPH ORBIT

EVALUATED ON ARIA. DATA COLLECTED AUGUST 2022.

Genuine (K(n)), n < 7
N 3 4 5 6
tw 2 3 4 5
WG −0.838 −0.755 −0.718 0.222

Genuine (Sk), n < 7
N 3 4 5 6
tw 1 1 1 1
WG −0.824 −0.748 −0.747 −0.679

Genuine (K(n)), n = 7 Genuine (Sk), n = 7
N 7 7
tw 6 1
WG 1.140 −0.567

of possible treewidths. We also note that in both graphs of
the clique graph orbit, there is always at least one vertex with
maximum degree of n− 1.
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Fig. 4. Minimum multi-partite entanglement witness values using the GHZ
state orbit and LU transformations on the Harmony device. The horizontal
arrows indicate which state is initially prepared, then transformed through
LU operations.

IV. ANALYSIS AND DISCUSSION

Robust Entanglement Score

From the GHZ state orbit results in Section III-B we can
compute for Harmony the RES-N score is 12 (see Table II)
since 4 qubits entangled using the full edge set of the 4-
qubit clique. The RES-U score is 42 (see Fig. 4), applying
LC operations to the 7 qubit Sk graph can transform it into
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Fig. 5. Minimum multi-partite entanglement witness values using the GHZ
state orbit on the Aria device. Each state is initially prepared in the Sk state
then local unitaries are applied to transform into the K(n) state.

the LU equivalent complete graph state. When the initial state
is Sk it is possible to generate multi-partite entanglement on
all circuit widths tested. When the initial state is a clique, we
were not able to prepare and verify multipartite entanglement
on n = 7 qubits.

From the GHZ state orbit results in Section III-B we can
compute for Aria the RES-N score is 20 (see Table III) since 5
qubits entangled using the full edge set of the 5-qubit clique.
The RES-U score is 42 (see Fig. 5), applying LC operations to
the 7 qubit Sk graph can transform it into the LU equivalent
complete graph state. When the initial state is Sk it is possible
to generate multi-partite entanglement on all circuit widths
tested. When the initial state is a clique, we were not able to
prepare and verify multipartite entanglement on n = 7 qubits.

The GHZ state orbit covers graphs with the maximum and
minimum treewidth on n-qubits: star graphs (tw = 1) and
clique graphs (tw = n−1). To test if n-qubits can be genuinely
entangled on treewidth (1 < tw < n − 1) graphs requires a
different LU class.

These classes can include the Cl(n), and R(n) graph. These
orbits cover graphs of 1 ≤ tw ≤ (n−2). But as shown in Fig.
2, these orbits grow rapidly with graph order. In [1], the graph
orbit of Cl(n) graphs was sampled from using random LC
sequences. This approach is not guaranteed to generate graphs
that give a representative sample of all treewidth values in the
orbit. The initial demonstrations reported in Section III-A only
use the Cl(n) or R(n) initial states.

Related Work: Efforts to measure genuine multi-partite en-
tanglement are of critical interest to studying quantum devices;
it can serve as a proxy to measure the performance of the de-
vice on applications that make extensive use of entanglement.
Entanglement witnesses were also recently used in a fault-
tolerant weight-4 parity check measurement scheme [17]. The
witnesses showed that the quantum error correction encoding
circuit generates genuine six-qubit multi-partite entanglement
in their shuttling-based trapped-ion quantum computer.

This work only considered graph states, which greatly
simplified the construction of the entanglement witnesses.
There are a number of approaches to entanglement witness
construction, which are applicable to other classes of entangled

states [18]–[26]. Other studies have used GHZ states as
a low-level coherent noise characterization tool [27]. While
this technique provides low-level information about the device
and entanglement, the information gained about the device is
specific to the noise model considered.

Other characterization techniques utilize graph states [28],
[29] to focus on detecting entanglement in specific states rather
than noise characterization. Similarly, graph state verification
was recently achieved on an 18-qubit device [30]. Prior work
has also inferred the entanglement present in the prepared
graph state in all possible subsystems [31], but is challenging
to implement for larger systems, except in special cases.

V. CONCLUSIONS

We have presented results based on verifying genuine
entanglement in n-qubit graph states with varying treewidth.
The use of stabilizer-based witness functions maximizes the
number of qubits we can test, the overhead of the benchmark
scales linearly. Through the local complementation of graph
states, this benchmark can systematically test a range of
entangled states.

Future work will strengthen the connection between bench-
mark and application performance. However, there is one near-
term example in the field of quantum advantage using cyclic
cluster states [32], [33] that has immediate connections to the
benchmark. Furthermore, in the data collection stage there is a
need for efficient sampling methods to effectively explore all
possible treewidth graphs in the orbit. Finally there are many
avenues for circuit design optimization such as parallelization
of two-qubit gates, consolidation of one-qubit gates, or use of
noise robust gate designs.
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