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Dynamical mean-field theory (DMFT) maps the local Green’s function of the Hubbard model to that of the
Anderson impurity model and thus gives an approximate solution of the Hubbard model from the solution of
a simpler quantum impurity model. Accurate solutions to the Anderson impurity model nonetheless become
intractable for large systems. Quantum and hybrid quantum-classical algorithms have been proposed to effi-
ciently solve impurity models by preparing and evolving the ground state under the impurity Hamiltonian on a
quantum computer that is assumed to have the scalability and accuracy far beyond the current state-of-the-art
quantum hardware. As a proof of principle demonstration targeting the Anderson impurity model we, for the
first time, close the DMFT loop with current noisy hardware. With a highly optimized fast-forwarding quantum
circuit and a noise-resilient spectral analysis we observe both the metallic and Mott-insulating phases. Based on
a Cartan decomposition, our algorithm gives a fixed depth, fast-forwarding, quantum circuit that can evolve the
initial state over arbitrarily long times without time-discretization errors typical of other product decomposition
formulas such as Trotter decomposition. By exploiting the structure of the fast-forwarding circuits we reduce the
gate count (to 77 CNOTs after optimization), simulate the dynamics, and extract frequencies from the Anderson
impurity model on noisy quantum hardware. We then demonstrate the Mott transition by mapping both phases
of the metal-insulator phase diagram. Near the Mott phase transition, our method maintains accuracy where
the Trotter error would otherwise dominate due to the long-time evolution required to resolve quasiparticle
resonance frequency extremely close to zero. This work presents the first computation on both sides of the
Mott phase transition using noisy digital quantum hardware, made viable by a highly optimized computation
in terms of gate depth, simulation error, and runtime on quantum hardware. To inform future computations we
analyze the accuracy of our method versus a noisy Trotter evolution in the time domain. Both algebraic circuit
decompositions and error mitigation techniques adopted could be applied in an attempt to solve other correlated
electronic phenomena beyond DMFT on noisy quantum computers.

DOI: 10.1103/PhysRevResearch.5.023198

I. INTRODUCTION

Using quantum computers to accurately model the be-
havior of strongly correlated many-body quantum systems is
one of the most promising near-term applications of noisy
intermediate scale quantum (NISQ) computers. For example,
quantum simulations of fermions only require ∼100 data
qubits to potentially surpass classical simulation methods. In
contrast, Shor’s algorithm [1] for factoring large numbers will
require tens of thousands of logical qubits comprising tens of
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millions of physical qubits to become practically useful [2].
A plethora of proposals for simulating correlated fermionic
systems using quantum computers exist [3–9], but relatively
few have been implemented or tested on current noisy de-
vices [10–13].

A wide variety of paradigmatic correlated condensed-
matter systems can be mapped to a simpler, corresponding
quantum impurity model by embedding methods such as
dynamical mean-field theory (DMFT). Despite the simplifi-
cation, classical simulations based on exact diagonalization
(ED) are still limited to dozens of orbitals [14] due to the
exponential growth of Hilbert space. Other methods, such as
quantum Monte Carlo (QMC) [15] and matrix product state
(MPS) [16] methods, also suffer from some sort of exponen-
tial complexity scaling making them intractable. Specifically,
in the case of QMC, the fermion minus sign problem [17]
has been shown to be NP-hard, in general, and limits effec-
tive simulations to only high temperatures. The exponential
scaling of MPS is due to entanglement issues for certain
geometries [16]. Quantum computers alleviate the exponential
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scaling by instead storing many-body quantum states with a
quantum memory resource that scales polynomially with the
system size.

In this work, we solve the two-site DMFT of the archety-
pal Hubbard model by utilizing a Lie-algebraic method to
fast-forward the dynamics of the corresponding Anderson
impurity model (AIM). Our fast-forwarding method, based on
a Cartan decomposition of the algebraic closure of the AIM
Hamiltonian, compiles the time evolution operator of the AIM
Hamiltonian into a fixed depth circuit for any chosen evolu-
tion time t . Therefore, the error from the quantum device is
independent of t and a one-time decomposition performed on
a classical computer allows for arbitrarily low numerical error
in the parameters of the decomposed factors. As described in
Ref. [18], given a Hamiltonian Ĥ , the Cartan decomposition
requires finding a particular sequence of unitary rotations
which, when contracted, span and parametrize the time evo-
lution unitary e−it Ĥ of a target system for all time t . The
Cartan decomposition generalizes the polar and singular-value
decompositions at the level of groups and provides a mapping
from the required dynamics onto two sets of parameterized
unitaries.

We first review and motivate the quantum impurity model
and provide our hybrid quantum-classical algorithm solving
it. Next, we apply group analysis to fast-forward the dy-
namical simulation on a quantum computer. The structure of
Cartan decomposition allows for further optimizing the time
evolution circuits to tailor to specific hardware architectures.
Finally, we perform simulations at vastly different timescales
and apply Fourier transform spectrum analysis to accurately
extract both low- and high-frequency poles from accordingly
sampled Green’s functions for the two-site DMFT on NISQ
hardware. This enables us to demonstrate for the first time
both the metallic and Mott-insulating phases in the Hubbard
model via a digital quantum simulation on quantum hardware.

II. QUANTUM ALGORITHMS FOR HAMILTONIAN
SIMULATION AND DMFT

In this section we briefly review a variety of existing quan-
tum algorithms for the DMFT problem, although none of them
is particularly successful in solving this problem. Our algo-
rithm will be detailed in Sec. IV including the fast-forwarding
algorithm in Sec. IV B, and future directions are discussed in
Sec. VII.

In DMFT one must self-consistently solve the electron
Green’s function (also known as the response function or
propagator) for the corresponding Anderson impurity model.
On a quantum computer, this quantity can be measured
via Hamiltonian simulation, which broadly refers to ap-
proximately compiling the time evolution operator U (t ) =
exp(−iĤt ) into a sequence of physically realizable unitary op-
erators, i.e., digital quantum gates. A wide variety of advanced
Hamiltonian simulation algorithms exist, each having a com-
putational runtime determined primarily by the scaling of the
approximation in terms of the simulation time t , system size
N , and desired approximation error ε. However, in practice,
these algorithms assume quantum hardware with arbitrarily
small physical error rates. This is at odds with simulations
run on near-term hardware where the results severely depend

on the physical error rates and therefore require significant
overhead in the form of, e.g., calibrations, error-processing,
filtering, and additional noise-reducing characterizations. As
discussed next, there is, to date, no general algorithm which
optimizes across all scales, e.g., having optimal runtime scal-
ing while remaining suitable for current noisy experimental
quantum computing platforms.

One class of Hamiltonian simulation algorithms are termed
“asymptotic,” meaning that they have already almost saturated
the expected optimal scalings, e.g., linear scaling in the sys-
tem’s interaction strengths in terms of ‖Ĥ‖, linear scaling in
the simulation time t , and ε−1 or log ε−1 scaling in the de-
sired approximation error ε [19]. Despite realizing Feynman’s
vision of natural asymptotic scaling, these methods’ utility is
severely restricted in the near term due to their reliance on
the assumption of arbitrarily high accuracy quantum opera-
tions which cannot be achieved in the general case outside
of the era of large-scale, fault-tolerant quantum computers
(FTQC). In contrast, promising near-term algorithms such
as low-order Trotter-Suzuki product formulas and variational
methods avoids some of the high overhead costs associated
with asymptotic algorithms, such as those arising from re-
quiring large registers of ancilla control qubits or higher-order
product formula expansions, yet these near-term algorithms
still face a significant challenge with long-time simulation due
to the accumulated error introduced by relatively large num-
ber of physical circuit operations on current noisy quantum
hardware.

Prior work studying the dynamics of interacting electrons
on current quantum hardware via DMFT observed that even
over very small timescales Trotter-based approximate time
evolution leads to nonphysical results: compared to theoretical
values, simulations on the quantum computer give inaccurate
frequencies in the time evolution for the two-site DMFT,
which are symptoms of decoherence or approximation er-
rors [12]. For NISQ systems, the Trotter approximation leads
to a dilemma: theoretically it becomes exact in the limit of
an infinite-depth circuit, so more accurate simulations re-
quire increased gate counts, but increasing gate count reduces
simulation fidelity due to accumulated noise. The hardware
requirements needed to achieve reliable updates in the DMFT
loop using the Trotter decomposition of the time evolution op-
erator was analyzed in Ref. [20] in terms of the controlled-NOT

(CNOT) two-qubit gate fidelity: to achieve perfect agreement
with the exact solution, first-order Trotter based simulation
requires a fidelity of FCNOT > 99.999%, or FCNOT > 99.9%
after applying a variational recompilation algorithm (termed
incremental structural learning by those authors).

In an alternate approach [11] without direct Hamiltonian
simulation, the authors used a variational quantum eigensolver
(VQE) to implement an exact diagonalization solver for the
two-site DMFT problem. This method works well for two-site
DMFT after a regularization technique is used to remove the
unphysical pole that arises from small errors, but the useful-
ness of the method depends on the scalability of VQE that
is hindered by the classical optimization part of this hybrid
algorithm [21–23] and the need to resolve an exponentially
growing number of eigenenergies with increasing system
size. Another potential approach focused on error mitigation
techniques which trade runtime for accuracy by taking, in
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general, exponentially many additional measurements of the
system to reconstruct the noise-free operations [24]. These
methods’ complexity is hidden in the exponential growth of
the mitigation technique’s sample complexity as one extracts
an infinitesimally small signal from a noisy quantum com-
puter [25]. Thus, despite years of work on this problem a
reliable NISQ-friendly algorithm that enables the closure of
the DMFT loop has not been achieved.

These issues illustrate a need for new approaches that
can extract meaningful information from fragile NISQ sim-
ulations. In Sec. IV, we describe our new hybrid DMFT
algorithm that uses a fast-forwarding algorithm (Sec. IV B)
to compress a Hamiltonian simulation circuit’s depth further
than the asymptotic linear scaling. For large interacting sys-
tems with arbitrary Hamiltonians this would be prohibitively
expensive due to the no-fast-forwarding theorem. (For free-
fermion noninteracting Hamiltonians of any system size, our
fast-forwarding algorithm always matches the optimal asymp-
totic scaling from Ref. [26].) However, for small interacting
systems such as the two-site AIM considered in this work,
the overhead of our fast-forwarding algorithm—although it
would be exponential in increasing bath sites—remains man-
ageable and allows for simulating arbitrarily long timescales
with constant gate depth. To offset this overhead scaling and
close the DMFT loop, we take advantage of the structure of
Cartan decomposition to further shorten the circuit (Sec. V A),
use randomized Cartan solutions to mitigate coherent noise
in additional to other error mitigation techniques (Sec. V B),
and apply Fourier transform to accurately extract the Green’s
function frequencies from noisy data (Sec. V C).

III. MODEL HAMILTONIANS

A. Hubbard model

The Fermi-Hubbard (abbreviated as Hubbard below)
model has no known exact solution except in one and infinite
dimensions, even though it is one of the simplest models
for interacting electrons. Despite its deceptive simplicity, the
Hubbard model can account for many interesting, strongly
correlated quantum phenomena in condensed matter physics,
including the Mott metal-insulator transition [27–29], antifer-
romagnetism [30], emergent spin and stripe orders [31,32],
strange metallic behavior [33], pseudogaps [34,35], and high-
temperature superconductivity [34,36].

The single-band Hubbard model Hamiltonian [37] is given
by

ĤHub = −t̃
∑

〈i, j〉,σ
(ĉ†

iσ ĉ jσ + ĉ†
jσ ĉiσ ) + U

∑
i

n̂i↑n̂i↓

− μ
∑
i,σ

n̂iσ , (1)

where 〈i, j〉 denotes nearest-neighbor sites i and j, ĉ†
iσ (ĉiσ )

is the electron creation (annihilation) operator for an electron
with spin σ ∈ {↑,↓} at lattice site i, n̂iσ = ĉ†

iσ ĉiσ is the elec-
tron density operator, t̃ is the hopping integral (tunneling),
U > 0 is the local (on-site) Coulomb interaction, and μ is
the chemical potential. In the context of quantum computing,
the Hubbard model has been recently investigated with the
applications of VQE algorithms [38,39] and as a benchmark
for quantum simulations [5,6,40].

B. Anderson impurity model and dynamical mean-field theory

Simulations of the Hubbard model are limited to dozens of
fermionic orbitals [41–43], far from the large number of par-
ticles in the macroscopic (thermodynamic) limit. DMFT [44]
is a significant development in studying the Hubbard model
in the thermodynamic limit. In the infinite spatial dimension
(∞-d) limit, such as the ∞-d hypercubic lattice and Bethe
lattice with infinite coordination number, DMFT exactly maps
the solution of the Hubbard model to that of the AIM in the
sense that the temporal correlations are accurately captured.
Specifically, in DMFT the interacting electrons in the Hubbard
model are reduced to electrons interacting on a single impurity
site coupled to a noninteracting electronic bath of continuous
levels that tunnel into the impurity site. In practice, the levels
are often approximated by Nb discrete bath sites with on-site
energy εi and index i ∈ {1, . . . , Nb} ≡ [Nb]. When Nb = ∞
(i.e., the infinite dimension limit), the DMFT solution to
the Hubbard model becomes exact. The AIM Hamiltonian is
given by

ĤAIM =
i=Nb∑
i=1,σ

Vi(ĉ
†
0,σ ĉi,σ + ĉ†

i,σ ĉ0,σ ) + Un̂0,↑n̂0,↓

+
i=Nb∑
i=0,σ

(εi − μ)n̂i,σ , (2)

where the hybridization parameter Vi is the hopping between
the impurity site (site-index i = 0) and bath sites (site-index
i ∈ [Nb]). The Coulomb interaction U -term only involves the
impurity site. Since we will consider nonmagnetic states, Vi

and εi do not depend on the electron spin σ .
The minimal realization of DMFT for the Hubbard model

dynamics is the two-site DMFT [45], involving the impu-
rity site and only one bath site (Nb = 1). In this work we
will consider solving this case on NISQ hardware. After
the Jordan-Wigner fermion-spin transform (see Appendix A),
Eq. (2) in fermion operators becomes the impurity Hamilto-
nian in Pauli string operators requiring 2(Nb + 1) qubits and
given by

ĤAIM = V

2
(X0X1 + Y0Y1 + X2X3 + Y2Y3) + U

4
Z0Z2, (3)

for the Nb = 1 case. Here, Xl , Yl , and Zl are Pauli operators
acting on qubit l . Specifically, the spin ↑ and ↓ modes on the
impurity site i = 0 (the bath site i = 1) are mapped to qubits 0
and 2, respectively (qubits 1 and 3, respectively). In addition,
we only consider the half-filled paramagnetic ground state, so
the impurity Hamiltonian Eq. (3) was simplified by setting
μ = U

2 , ε0 = 0, and ε1 = U
2 in Eq. (2).

IV. ALGORITHM FOR COMPUTING GREEN’S FUNCTION

In DMFT, the dynamic response of the interacting electron
system is described by the retarded impurity Green’s function
denoted as GR,↑

imp(t, t ′) (for the spin-up orbital on the impurity
site) in the time domain and is given by

GR,↑
imp(t, t ′) = −iθ (t − t ′)〈ψ0|{ĉ0(t ), ĉ†

0(t ′)}|ψ0〉, (4)
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FIG. 1. Flow diagram of the DMFT loop specialized for the two-site calculation. Our calculations are initialized with V = 0.5. Each DMFT
loop iteration also updates the time evolution Cartan parameters corresponding to the updated V , although the Hamiltonian algebra remains the
same (so the group analysis needs to be done only once). The hybrid computation of �(ω) evaluates the two frequencies ω1 and ω2 separately,
in a procedure that is elaborated on in Sec. V C.

where θ (t ) is the step-function, ĉ0(t ) = U †(t )ĉ0U (t ), ĉ†
0(t ) =

U †(t )ĉ†
0U (t ), time evolution operator U (t ) = e−it ĤAIM , and

|ψ0〉 is the many-body ground state of the impurity Hamil-
tonian ĤAIM (the subscript “0” in |ψ0〉 indicates the ground
state, not site index 0). Due to the time-translation invariance
of a time-independent Hamiltonian ĤAIM, we simplify the
computation by setting t ′ = 0. Since we only consider the
paramagnetic ground state, the impurity Green’s function is
diagonal in spin-space GR,σσ ′

imp (t ) = GR,σ
imp (t )δσσ ′ and GR,↑

imp(t ) =
GR,↓

imp(t ). We therefore drop the spin index in the remainder
of this work and denote the impurity Green’s function by
GR

imp(t ).
In Appendix B we elaborate on the full expansion and

subsequent simplification of the Green’s function after the
Jordan-Wigner transform is applied, which results in the rela-
tively simple expression

iGR
imp(t > 0) = Re〈ψ0|U †(t )X0U (t )X0|ψ0〉 (5)

that is easy and inexpensive to measure on quantum hardware.
This term can be measured with a single Hadamard-test-type
quantum circuit as shown in Fig. 3(b) using only a single time
evolution unitary as discussed Sec. V.

A. Iteration loop for DMFT

The DMFT mapping is a self-consistent mapping, re-
quiring multiple iterations where the AIM Hamiltonian
parameters Vi and εi are updated, from an initial guess, until
the system reaches self-consistency. At each new iteration, the
parameters Vi and εi computed in the previous iteration are put
back into the impurity model whose Green’s function is then
solved and the solution is used to recompute these parameters.
The iteration loop continues until the recomputed parameter
values are sufficiently close to the previous ones. For the
two-site model, particle-hole symmetry and the structure of
the two-site solution provide a mechanism for reducing the
cost of the computation and improving the accuracy of con-

vergence. The steps of DMFT loop used in our calculations
are represented in Fig. 1 and summarized as follows.

(1) Choose initial values for parameters Vi and εi. Due to
half-filling of the two-site model, the values for ε0 and ε1 are
fixed and do not need to be updated.

(2) On the quantum computer, simulate ĤAIM and then
sample and measure GR

imp(t ) for a selection of time t values. In
the two-site model, GR

imp(t ) has the following analytical form:

iGR
imp(t > 0) = 2[α1 cos (ω1t ) + α2 cos (ω2t )], (6)

where ω1 is the quasiparticle resonance frequency and ω2

corresponds to the Hubbard band [45].
(3) Compute the discrete Fourier transform (DFT) of the

sampled time-domain Green’s function, giving GR
imp(ω).

(4) Compute the self-energy �imp(ω).
(5) From the self-energy, compute the quasiparticle

weight Z and update Vnew = √
Z . In this work, we use the

value of the quasiparticle weight computed using the deriva-
tive of the self-energy at zero frequency

Z−1 = 1 − dRe[�imp(ω)]

dω

∣∣∣∣
ω=0

. (7)

In Appendix C we derive an analytical form of the deriva-
tive in Eq. (7) to avoid the numerical instability of evaluating
�imp(ω) and its derivative near ω = 0, and also to remove
the dependence of amplitudes α1 and α2 whose values are
too sensitive to the hardware noise. The final equation used
to compute the quasiparticle weight is as follows:

Z = ω2
1ω

2
2

V 2
(
ω2

1 + ω2
2 − V 2

) , (8)

where ω1 and ω2 are extracted from the Fourier transform of
the sampled time-domain Green’s function using the method
given in Sec. V C, a method we find very robust in obtaining
accurate frequencies from noisy data.
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FIG. 2. (a) A generalized diagram of the Cartan decomposition of the Hamiltonian algebra with dimension = 24 within the special unitary
algebra with dimension = 255. Here, k0 is the set of basis elements which commute with X0, which is not a typical requirement of Cartan
decomposition but results in a significant gate cost reduction in our application. (b) A block circuit diagram of the decomposed time evolution
operator. (c) Cartan decomposition applied to the AIM Hamiltonian Eq. (A2), where the blue, shaded light blue, magenta, and shaded orange
color regions correspond to the sets k, k0,m, and h.

B. Cartan decomposition

The fast-forwarding algorithm used in our time evolution
operator is based on the application of an algorithm for per-
forming Cartan decomposition. Here, we briefly summarize
the algorithm applied to ĤAIM given in Eq. (3) and also il-
lustrate the steps in Fig. 2. We denote a (real) Lie algebra
and its elements by lowercase Fraktur and Roman characters,
respectively, such as g and ig ∈ g, where g is a n-qubit Pauli
string or a linear combination of them (with real coefficients).
Here, we use the physicists’ convention with a prefactor i in
the Lie algebra elements. SU(2n) group elements are denoted
by uppercase Roman characters, e.g., G = exp(ig).

The goal is to find a factorization of the time evolution
unitary operator by use of the KHK theorem [18,46], which
states that the unitary may be written as

e−it Ĥ = eike−ithe−ik, (9)

where k and h are elements of a Cartan decomposition (see
below). Note that the time argument t only appears in one
factor. The general steps to obtain the Cartan form of the time-
evolution operator are detailed in Refs. [18,46]; we briefly
summarize them here for completeness.

(1) Generate the Hamiltonian algebra g(Ĥ ). This is a Lie
algebra over the field R that is generated by the closure of
commutators (Lie brackets) of ibl , where bl ’s are individual
n-qubit Pauli string terms of the Hamiltonian Ĥ = ∑

l βl bl ,
(βl ∈ R). g(Ĥ ) a subalgebra of su(2n).

(2) Find a Cartan decomposition g = k ⊕ m of the Hamil-
tonian algebra g(Ĥ ) such that iĤ lies in m. Here, k is a
subalgebra of g(Ĥ ).

(3) From m find a largest commuting subalgebra (i.e., a
maximal Abelian subalgebra) h, which is called a Cartan
subalgebra of the pair (g, k).

(4) Find a local extremum over the algebra k of f (k) =
〈eik (v)e−ik, Ĥ〉. Here, 〈a, b〉 is the Killing form proportional
to Tr(ab) for a, b ∈ su(2n). ik is an element of k written as a
sum of Pauli strings k = ∑

j κ jk j where ik j forms a basis for

k. The optimization is performed over the coefficients κ j . v is
a fixed element in h: v = ∑

j γ
jh j where ih j are Pauli strings

that form a basis for h, and γ is a transcendental number such
as π . Here γ j is the jth power of γ .

(5) Compute the vector e−ik (iĤ )eik = ih.
The results of the algorithm are the elements ih ∈ h and

ik ∈ k which satisfy e−it Ĥ = eike−ithe−ik . Often, additional de-
composition is required to implement eik using a universal
gate set including only single-qubit and CNOT gates, but in the
case of two-site DMFT k is Abelian and the decomposition
is straightforward [47]. Because h is always composed of
commuting elements, the full exponential is relatively simple
to implement exactly on a quantum computer.

We note that the dimensionality of the Hamiltonian algebra
generated by the ĤAIM scales exponentially with the number
of bath sites. However, for the two-site model, the size of
the algebra remains manageable. It is an open question of
continuing interest if the dimensionality of the Hamiltonian
algebra can be constrained to polynomial in the number of
bath sites by adopting some effective approximate algorithm.
On the other hand, for the ground-state energy problem and
ground-state preparation problem, there exists an approximate
algorithm with polynomial (in bath sites) runtime [48].

Analysis of the terms in k resulting from the Cartan decom-
position in Fig. 2(c) reveals that we can divide k into a set of
basis elements which commute with X0, which we call k0, and
the elements which do not, which we call k1.

(6) Decompose k into k0 and k1 such that k = k0 ⊕ k1 and
[k0, X0] = 0.

This step later leads to a reduction in the circuit construc-
tion (see Sec. V A), but we highlight the useful partition here
due to the flexible product form of the Cartan decomposed
time evolution operator.

V. HARDWARE IMPLEMENTATION

The general circuit used to evaluate the Green’s func-
tion is constructed using three major components: the initial
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ground-state preparation, the time evolution, and the
Hadamard-test measurement. Specifically, the system qubits
must be first instantiated in the entangled ground state |ψ0〉
of the ĤAIM with the given U of the Hubbard model and
the current V of the DMFT iteration loop. The Green’s
function expectation is then evaluated using measurements
on an ancilla qubit introduced through a Hadamard-test-like
interference circuit [49,50]. The interference circuit allows
for the operator X0(t ) = U †(t )X0U (t ) in Eq. (5) to be im-
plemented using only a single instance of a time-evolution
operator U (t ), which is itself implemented using the sequence
of Pauli-exponential gates determined using a set of Cartan
decomposition solutions k0, k1, and h. The circuit structure
remains the same since g(ĤAIM) is independent of specific
values of U �= 0 and V �= 0, while the phase parameters of
the Pauli-exponential gates are updated once per iteration of
the DMFT loop when the Hamiltonian is updated with a new
value of V .

In Appendix D, we tabulate the qubit coherence time val-
ues and the CNOT gate errors for IBMQ_MANILA, which are
extracted from the calibration data recorded at the time of
quantum simulation.

A. Circuit components

Our ground state for all values of V and U was initialized
using the ansatz circuit in Fig. 3(a), constructed from only
a single variational parameter θ and three nearest-neighbor
CNOTs, which correspond to the minimum number of varia-

tional parameters and CNOTs needed to entangle four qubits
and encode the dependence on the ratio V/U . The ansatz
circuit was initially obtained by manually simplifying the
UCCSD circuit in Fig. 7 of Ref. [51] (but with the two single
excitation blocks moved to the right end of the circuit and the
two rotation angles set to π/2); our simplified circuit appears
similar to (but still simpler than) the symmetry preserving
circuit in Fig. 1 of Ref. [52]. In Appendix E we prove that the
ansatz circuit in Fig. 3(a) prepares the exact ground state of
AIM Hamiltonian Eq. (3). The value θ is determined by min-
imizing the energy through a simulated Variational Quantum
Eigensolver.

A generic circuit [12,49,50] used for evaluating the
expectation value 〈B(t )A〉, e.g., the Green’s function in
Eq. (5), is shown in Fig. 3(b). The real component of
the expectation is determined through a measurement on
the ancilla qubit: Re[〈B(t )A〉] = 〈Za〉 = Pr(0a) − Pr(1a). The
corresponding imaginary component, which is not required
for our purposes, can be evaluated as 〈Ya〉.

The Cartan decomposition is computed using the Cartan
Quantum Synthesizer PYTHON package [53]. For a given
solution k = ∑

j κ jk j to the Cartan decomposition and the
corresponding element h = ∑

j η jh j , the time-evolution op-
erator is implemented using a sequence of single Pauli string
exponential of the form in Fig. 3(d): for example, the factors
in e−it

∑
j η j h j = ∏

j e−itη j h j . The decomposition k = k0 + k1

(Fig. 2) factorizes U (t ) in Fig. 3(b) into the circuit in Fig. 3(c),
which follows from commuting e−ik0 through X0 as follows:

〈U †(t )X0U (t )X0〉 = 〈ψ0|
(
eik0 eik1 eithe−ik1 e−ik0

)
X0

(
eik0 eik1 e−ithe−ik1 e−ik0

)
X0|ψ0〉

= 〈e−ik0ψ0|
(
eik1 eithe−ik1

)
X0

(
eik1 e−ithe−ik1

)
X0|e−ik0ψ0〉. (10)

Instead of the initial state |ψ0〉, we prepare e−ik0 |ψ0〉 and time
evolve using eik1 e−ithe−ik1 . A combination of additional man-
ual and algorithmic transpiling through QISKIT [54] reduces
the full cost of the final circuit to 77 nearest-neighbor CNOTs.

B. Error mitigation

Beyond the noise reductions through careful compilation
of the circuit, we implement three methods in an effort to
mitigate errors during the runtime. First, randomized Cartan
solutions are employed in compiling the circuit to mitigate
coherent noise, especially the noise due to overrotation of
the entangling gates [55]. The distinct Cartan solutions of k
vectors that minimize f (k) are obtained by using different
initial conditions in the minimization. We observe that averag-
ing the Green’s function measurements from multiple circuits
compiled using different k solutions indeed reduces the error
in the evaluation. In this work, we use two different solutions
to the Cartan decomposition.

The second method used to reduce error is measurement
error mitigation, which serves as an initial step in correcting
noise in the experiment results. We process the quantum mea-
surements through the native measurement error mitigation
procedure in QISKIT [54].

The third method follows from postselection of the bit
strings from measurements on the fermion system qubits,
which we find is the most effective among the three error
mitigation methods used. The Hadamard test used to mea-
sure the Green’s function does not require a measurement
of these qubits, instead assuming that the system qubits are
traced out of the final circuit when measuring 〈Za〉 on the
ancilla qubit. The expectation 〈Za〉 is unaffected if the partial
trace operation is replaced by simultaneous measurements on
the system qubits in the computational (Z) basis. Since the
final state of system qubits is a superposition of U (t ) |ψ0〉
and X0U (t )X0 |ψ0〉 (for Za = ±1, the system state is [U (t ) ±
X0U (t )X0] |ψ0〉), both of which consist of bit strings with the
same fixed particle number and total spin Sz as the original
state |ψ0〉. The initial ground state is known to have two
fermions with a total spin Sz = 0, meaning one particle in each
spin sector: for spin ↑ (↓), bit string |q0q1〉↑ (|q2q3〉↓) = |10〉
or |01〉, so for the evaluation of the Green’s function by the
expectation 〈Za〉, we only include the shots when the mea-
sured bit strings of the system qubits satisfy these constraints.
This postselection procedure corresponds to checking for an
odd number of bit-flip errors in the fermion system qubits
which we expect to affect the final ancilla measurement.
On the quantum hardware used in this work, IBMQ_MANILA,
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FIG. 3. (a) Ansatz circuit used to prepare the ground state. (b) General Hadamard interference type circuit used to compute Re[〈B(t )A〉].
(c) Block decomposed Green’s function circuit used in the final computation. The property [k0, X0] = 0 allows for commuting the k0-block
through the CNOT (i.e., controlled-X ) gate so it need only be applied once. (d) A general circuit showing the implementation of the exponential
of a Pauli string, served as a template to decompose the blocks (such as e−ik1 and e−ith) in panel (c).

approximately 65% of the circuit evaluations are discarded
due to this correction, which is applied after all other error
mitigation techniques.

C. Frequency extraction and self-consistency in DMFT loop

Computing the Green’s function with adequately con-
verged DMFT loops requires minimizing errors while evaluat-
ing a series of discrete time points sufficient to determine both
the low-frequency signal ω1 and the high-frequency signal ω2.
Generally, these criteria are contradictory to a consideration of
minimizing the runtime for the evaluation since, by increasing
the number of shots, the number of randomized Cartan solu-
tions, and the discrete time points evaluated corresponds to
increasing accuracy in convergence but significantly increased
runtime. One example of such challenge is as follows. Above
the critical Uc = 6, at self-consistency the converged frequen-
cies are ω1 = 0 with α1 = 0 and ω2 = U/2 with α2 = 1/2.
Consequently, for any discrete time step size �tH with a
Nyquist frequency π/�tH above the high frequency ω2 =
U/2, sampling to a sufficiently long time tL � tH to distin-
guish the low-frequency signal ω1 is prohibitively expensive.
For example, finding ω1 = 0.01 ± 0.005 with U = 8 requires
over 5000 evaluations using a sampling rate equal to twice
ω2. Instead, we sample the Green’s function at two differ-
ent rates to evaluate ω2 first and then ω1. Due to frequency
aliasing, the order of the sampling is important. Choosing a
low sampling rate to accurately evaluate the low frequency ω1

with sufficiently long time simulation may result in sampling
below the Nyquist rate of ω2, the high-frequency signal. For
a given sampling rate ωs, the alias frequency ωa within the
Nyquist frequency ωs/2 can be calculated from the true signal
frequency ω using the following simple formula [56]:

ωa =
∣∣∣∣ω − ωs × NINT

(
ω

ωs

)∣∣∣∣, (11)

where NINT(x) ≡ ��2x�/2� is the (round-half-up) nearest in-
teger to x. Thus, we evaluate ω2 first so the high-frequency
aliased signal appearing in the low frequency ω1 sampling

regime can be discarded (it nevertheless can be used to check
the value of ω2).

Figure 4 shows the evaluation of iG(t ) with the ideal sim-
ulator in orange [(i) and (ii), upper] and the hardware results
from high frequency sampling for ω2 in purple [(i), lower] and
ω1 in blue [(ii), lower]. In each case, tH and tL are sets of 150
values for time and are chosen with sampling rates between
three and ten times greater than the frequency of ω2 and ω1

determined in the previous iteration of the DMFT loop (in
both cases above the corresponding Nyquist rate).

To prevent erroneous updates of the loop when an incorrect
peak is found due to noise, only the frequency region around
an expected peak is searched, as determined by a height crite-
ria based on the most prominent isolated peaks. This process
is elaborated on in Appendix F. In the case a condition fails,
the particular high-frequency or low-frequency calculation is
rerun until the condition passes before Z is computed. The
loop is iterated until the difference between two sequential
results of V is within a tolerance, in our case chosen to be
|�V | � 0.02. The exception is the convergence for U = 6.5,
in which a prominent peak for ω1 was not found after three
attempts and the loop was terminated.

Last, the removal of the dependence on amplitude in com-
puting Z as in Eq. (8) is essential to the success of the
DMFT calculation on noisy hardware. The amplitudes of the
observed Green’s function on hardware are 5 to 15 times
lower than in the ideal case, and in general relative signal
amplitude α1/α2 is not reliably preserved by observed reduced
amplitudes.

VI. RESULTS

Despite the significant noise of actual quantum hardware,
the quasiparticle and Hubbard band frequencies are preserved
in the final discrete Fourier transform of the measured Green’s
function, allowing for reasonable updates to the DMFT loop,
as shown in Fig. 5. The ideal convergence (orange dashed
curve in Fig. 5) obtained using the analytical form of the
impurity Green’s function [57], which is interpolated to
serve as a guideline, is compared to the convergence of our
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FIG. 4. Green’s function sampled on the quantum computer IBMQ_MANILA at self-consistency. Initial conditions (a) U = 2 and Vinitial =
0.964 and (b) U = 8 and Vinitial = 0.119. (i,ii) The normalized Green’s function with a phase correction (top, shifted vertically) and the actual,
noisy results (bottom) with high (tH ) and low (tL ) sampling rates to evaluate the high frequency signal ω2 and and the low frequency signal
ω1, respectively. (iii) The discrete Fourier transform showing the ideal frequencies (solid, orange) and the evaluated peaks (dashed) for both
frequencies. Spurious peaks at ω = 0 are removed. (a) Returns a value of Vnew = 0.944 and (b) returns a value of Vnew = 0.116, both within
the tolerance of 0.02.

FIG. 5. DMFT iteration step convergence behavior (a,b) above and (c,d) below the critical Uc = 6. Despite hardware noise-induced error
in updating V , all converged values are within a stringent small error tolerance we choose, with the exception of U = 6.5 for which we
terminate the iteration after no peaks near ω = 0 were located. The starred points for U = 2 and U = 8 correspond to the Green’s function
evaluations plotted in Figs. 4(a) and 4(b), respectively. Computing self-consistency near Uc = 6 is cost prohibitive due to critical slowing down
in convergence, and therefore the results near Uc are omitted from the phase diagram.
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FIG. 6. (a) Half-filling Hubbard model phase diagram from DMFT computed on a quantum computer. The solid black line corresponds
to the exact Z value of self-consistency given by Eq. (12), and the green dots correspond to the computed Z values in the final few steps of
the DMFT loop (the darker the green, the closer it is to the last iteration step). We omit from the plot iteration steps with Z > 1. No data
are presented for 5 < U < 6.5 because the convergence around the critical Uc = 6 slows down significantly, resulting in a cost-prohibitive
iteration requirement to reach convergence. (b) Local density of states A(ω) above and below Uc, where Uc is marked by the dashed line. For
visibility, a peak-broadening factor of η = 0.2 is included.

algorithm executed using the noiseless simulator (orange
crosses) and the quantum hardware (blue dots). In the insu-
lating phase [Figs. 5(c) and 5(d)], on the noiseless simulator,
our algorithm fails to converge to exact zero for ω1 due to
the difficulty in identifying the corresponding peak with van-
ishing amplitude α1. On the other hand, despite significant
deviations from the ideal convergence behavior, the conver-
gence on the quantum hardware still trends toward the final
self-consistency (blue dashed horizontal line) within a small
error tolerance. In addition, in the case of U = 6.5, these fluc-
tuating deviations appear to increase the rate of convergence,
but generally we noticed that the deviations prevent ideal,
smooth convergence in spite of the significant filtering and
error mitigation.

Figure 6 shows the phase diagram of the quasiparticle
weight Znoisy (orange stars) produced on quantum hard-
ware, plotted against the exact solutions for Zexact (black
curve) [45], where

Zexact =
{

1 − (U/6)2, 0 � U < Uc = 6,

0, U � 6.
(12)

The green dots in Fig. 6(a) are the intermediate results ob-
tained in each iteration and the color gradient shows the
convergence toward the final value Vnoisy, which is taken to
be the average of the final two steps in the iteration loop. The
inset in Fig. 6(b) shows the self-consistent local density of
states above and below Uc. For U > Uc, converged α1 = 0
(and Z = 0) at the self-consistency, requiring a very good
signal-to-noise ratio in the results to determine convergence.
Therefore, Z in Fig. 6 for U > Uc saturates at the signal-
to-noise floor, which is above zero but small enough to be
distinguished from the values of the conducting phase, al-
lowing us to mark the phase transition. In this regime, the
fast-forwarding enabled by Cartan decomposition is essential
to appropriately study the dynamics over very long times.

Results for U very close to Uc are omitted, as critical slowing
down confounds the convergence within a reasonable number
of iteration steps [58,59].

VII. ERROR ANALYSIS AND FUTURE DIRECTIONS

DMFT remains an impurity-based technique of great
interest due to its computational capacity and broad
applicability. Despite the promise of asymptotic scaling for
Hamiltonian simulation problems in the FTQC regime even
the simple case of simulating the two-site DMFT problem
has remained intractable on accessible NISQ hardware. This
diametrically opposes the platonic ideal of FTQC. In reality,
both algorithmic errors and physical errors, from imperfect
gates and environmental interactions, arise and must be ac-
counted for. Physical errors severely constrain the long-time
simulations, and thus the lowest frequency responses.

We analyze error scalings to understand the competition
between the physical and algorithmic errors in fast-forwarded
quantum computations versus (second-order) Trotter factor-
izations. We consider the model of U = 2 near convergence,
which has a simulation threshold of ttarget = 8 required to
simulate one full period of ω1, as informed by Fig. 4(a.iii).
We then construct a coarse and conservative error model. As
the leading cause of physical errors, we assume a CNOT gate
fidelity of FCNOT = 1 − εCNOT = 0.9921 (as reported by the
vendor at the time of data collection) and that all other gates
are perfect. Since our proposed algorithm uses 77 CNOTs in
this instance for a putative target physical fidelity of Fruntime =
F77

CNOT = 0.543, although from Fig. 4(a.iii) one can see that in
practice, from the depolarization of the obtained signal, our
experimental fidelity Fexpt � 0.2. This error model does not
capture qualitative physical error details but rather captures
the salient qualitative scaling trend.

Figure 7 illustrates the gate requirements for Trotter-
based simulations in terms of a total simulated time (x-axis)
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FIG. 7. (a) Contour plot showing the estimated total fidelity of a
second-order Trotter-based algorithm for a given simulation time and
number of Trotter steps. The dashed lines correspond to the range
of estimated total fidelity (0.18–0.54) from our algorithm, while the
bold line corresponds to the estimated maximum fidelity that can be
achieved for a given target simulation time using the second-order
Trotter formula. (b) The line cut corresponding to the bold maximum
fidelity line showing the decay of the maximum fidelity as the target
time increases. Represents the feasibility of simulating with U = 2,
V = 0.94 near convergence.

and the number r of Trotter steps (y-axis). The Trotter
fidelity FTrotter = 1 − 0.152t3/r2 is estimated via exact diag-
onalization with the Frobenius norm in ‖U (t ) − VTrotter(t )‖
(Appendix G). The total fidelity is Ftotal = FTrotterFruntime.

Building upon the comparison of our algorithm and Trot-
terization, it is important to note that, while asymptotic
algorithms such as Trotterization are useful for a large-scale
system in the long term (fault-tolerance), they are not suit-
able in the near term due to the accumulation of runtime
noise present in current quantum computers. Our algorithm
addresses this limitation for the task of solving the two-site
DMFT self-consistent impurity Green’s function. This work
highlights the importance of considering error types and error
mitigation on the NISQ system. Despite higher initial resource
costs (CNOT counts) compared to existing experimental and
theoretical works [11–13,20], our algorithm preserves the fre-
quency signal despite significant depolarizing noise: shifting
the error into a single component of the analysis that can be
effectively mitigated, which is in contrast to methods such
as Trotterization that introduce errors in both the frequency
domain (chirping) and amplitude (depolarizing noise). Our er-
ror mitigation methods such as Cartan randomized compiling,
postselection of measurement results, and Fourier filtering
mitigate the depolarizing noise while increasing the fidelity
of the frequency signals.

Although generally accepted that error mitigation cannot
effectively mitigate noise with polynomial overhead [25,60],
the existence of a quantum advantage from NISQ computers
remains open and error mitigation techniques and algorithm
design will allow increased information processing power
from an otherwise noise-limited quantum computer. The ex-
tent to which error mitigation and error-aware circuits can
approach quantum advantage is of significant interest in
demonstrating useful, if limited, NISQ quantum applications.
Additionally, mitigating and understanding the sources and
types of runtime or algorithmic errors may allow for reducing
the threshold for which fault-tolerant quantum algorithms can
be applied [61,62] by lowering the target total fidelity at the
cost of additional sampling overhead or runtime overhead.

VIII. CONCLUSION

We demonstrated a two-site DMFT calculation on current-
generation superconducting quantum hardware with linear
CNOT connectivity. Compared to previous methods using the
Trotter product formula [12] and the variational method [11]
that fail to converge in either the conducting (small U ) or
the insulating (large U ) phase, our work is the first general
implementation to obtain converged physical observables in
both phases over a wide range of U . We find that the bottle-
necks in the calculation are the noise in the quantum computer
and slow convergence near the transition point. To circumvent
these issues we introduced a variety of optimization and error
mitigation methods including randomized Cartan solutions in
the time evolution, measurement error mitigation, analysis
of alias signals in the DFT, and postselection of data. The
postselection of data includes enforcement of particle num-
ber and total spin conservation since the Hamiltonian under
consideration cannot create/destroy particles or flip the spin
of particles.

As demonstrated in this work, Cartan fast-forwarding
serves to encode and exploit frequency information despite
significant noisy operations on the quantum computer. Al-
though the algorithm used scales poorly with the number
of lattice sites in models of interacting fermions—here for
the four spin-orbital simulation the fixed depth of the Cartan
algorithm is significantly longer than a single Trotter step—it
provides access to simulations over much longer timescales
when the full Trotter circuit depth eventually overtakes the
fixed depth of the Cartan algorithm. Thus, for calculations
which depend on oscillation frequencies, such as the DMFT
and other embedding problems, this and other fast-forwarding
algorithms may prove valuable in in the near term, especially
when tailored for hardware connectivity.

The data and code that support the findings in this study
are available at Ref. [63].
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APPENDIX A: JORDAN-WIGNER TRANSFORM

For digital quantum simulation of fermionic systems,
generally we algebraically map the fermion creation and
annihilation operators for n fermion modes to the n-qubit
Pauli string operators

⊗n−1
l=0 σ̂ al (al ∈ {x, y, z, 0}), which are

Kronecker tensor products of the Pauli matrices σ̂ x = X =
(0 1
1 0), σ̂ y = Y = (0 −i

i 0 ), and σ̂ z = Z = (1 0
0 −1) and the

identity matrix σ̂ 0 = I = (1 0
0 1). We introduce the notation

σ̂ a
l = I⊗(l−1) ⊗ σ̂ a ⊗ I⊗(n−l ) for the type of Pauli strings act-

ing on only a single qubit. For example, Zl = σ̂ z
l = I⊗l ⊗ Z ⊗

I⊗(n−1−l ). The Jordan-Wigner transform [64–66] used in this
work provides one such mapping between the fermionic and
qubit algebra. The details of the Jordan-Wigner transform are
as follows.

First, map the indexed fermionic states in the Fock basis to
indexed qubit states in the computational basis. We employ
a mapping where the occupancy numbers of spin-↑ modes
are enumerated first followed by that of spin-↓ modes so that
the Fock basis and computational basis states are both given
by the same “bit string” |n0↑, n1↑, . . . , n0↓, n1↓, . . .〉, where
n jσ = 1 (n jσ = 0) for occupied (unoccupied) modes of spin-σ
and lattice site j.

Second, map the indexed fermionic operators (site index
0 � j � Nb) to the corresponding qubit operators as follows:

ĉ j↑ = 1
2 Z0 · · · Zj−1(Xj + iYj ), ĉ†

j↑ = 1
2 Z0 · · · Zj−1(Xj − iYj ), (A1a)

ĉ j↓ = 1
2 Z0 · · · ZNb+ j (XNb+1+ j + iYNb+1+ j ), ĉ†

j↓ = 1
2 Z0 · · · ZNb+ j (XNb+1+ j − iYNb+1+ j ), (A1b)

n̂0↑ = 1
2 (I0 − Z0), n̂0↓ = 1

2 (INb+1 − ZNb+1). (A1c)

In the above, Zj · · · Zj′ = ∏ j′
k= j Zk for j′ � j and Zj · · · Zj′ = 1 for j′ < j. This mapping preserves the canonical anticommuta-

tion relations between fermion operators, which are {ĉ jσ , ĉ†
j′σ ′ } = δ j j′δσσ ′ and {ĉ jσ , ĉ j′σ ′ } = {ĉ†

jσ , ĉ†
j′σ ′ } = 0.

Finally, plugging in Eqs. (A1a) to (A1c) to Eq. (2) gives

ĤAIM =
Nb∑

i=1

Vi

2
(X0Z1 · · · Zi−1Xi + Y0Z1 · · · Zi−1Yi + XNb+1ZNb+2 · · · ZNb+iXNb+1+i + YNb+1ZNb+2 · · · ZNb+iYNb+1+i )

+ U

4
(Z0ZNb+1 − Z0 − ZNb+1) −

Nb∑
i=0

εi − μ

2
(Zi + ZNb+1+i ). (A2)

We dropped a constant term U
4 I0INb+1 = U

4 from the above Hamiltonian since a constant energy shift does not affect the dynamics
of a system.

For the two-site case, with the impurity site and only one bath site (Nb = 1), the Hamiltonian Eq. (A2) simplifies significantly.
Further, at the half-filling (total two particles in the two-site case), μ = U

2 ε0 = 0, and ε1 = U
2 [45,49]. Therefore, the two-site

ĤAIM with a half-filling ground state is given by Eq. (3).

APPENDIX B: GREEN’S FUNCTION EVALUATION

Plugging in Eqs. (A1a) to (A1c) to Eq. (4) (with t ′ = 0), we obtain

〈ψ0|ĉ0(t )ĉ†
0|ψ0〉 = 〈ψ0|U †(t )

1

2
(X0 + iY0)U (t )

1

2
(X0 − iY0)|ψ0〉

= 1

4
[〈U †(t )X0U (t )X0〉 + i〈U †(t )Y0U (t )X0〉 − i〈U †(t )X0U (t )Y0〉 + 〈U †(t )Y0U (t )Y0〉],
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〈ψ0|ĉ†
0ĉ0(t )|ψ0〉 = 〈ψ0|1

2
(X0 − iY0)U †(t )

1

2
(X0 + iY0)U (t )|ψ0〉

= 1

4
[〈X0U

†(t )X0U (t )〉 + i〈X0U
†(t )Y0U (t )〉 − i〈Y0U

†(t )X0U (t )〉 + 〈Y0U
†(t )Y0U (t )〉],

4iGR
imp(t > 0) = 4〈ψ0|ĉ0(t )ĉ†

0 + ĉ†
0ĉ0(t )|ψ0〉

= 〈X0(t )X0〉 + i〈Y0(t )X0〉 − i〈X0(t )Y0〉 + 〈Y0(t )Y0〉 + 〈X0X0(t )〉 + i〈X0Y0(t )〉 − i〈Y0X0(t )〉 + 〈Y0Y0(t )〉, (B1)

where X0(t ) ≡ U †(t )X0U (t ), Y0(t ) ≡ U †(t )Y0U (t ), 〈Ô〉 ≡
〈ψ0|Ô|ψ0〉. Measuring the eight terms in function GR

imp(t )
would require 16 total circuits: two circuits per term for the
real and imaginary components, respectively. Using certain
symmetries of the impurity Hamiltonian and the ground state
we can show that

〈Y0(t )Y0〉 = 〈X0(t )X0〉, 〈Y0Y0(t )〉 = 〈X0X0(t )〉, (B2a)

〈Y0(t )X0〉 = 〈Y0X0(t )〉, 〈X0(t )Y0〉 = 〈X0Y0(t )〉. (B2b)

Using Eqs. (B2a) to (B2b), we find 4iGR
imp(t > 0) =

2[〈X0(t )X0〉 + 〈X0X0(t )〉] = 2[〈X0(t )X0〉 + 〈X0(t )X0〉∗] =
4Re〈X0(t )X0〉, which gives Eq. (5) iGR

imp(t > 0) =
Re〈X0(t )X0〉. This reduces the Green’s function evaluation to
a single measurement circuit for Re〈X0(t )X0〉.

Now we prove Eq. (B2a) first. The impurity Hamiltonian
ĤAIM given by Eq. (3) is invariant under rotation Rz,01 =
e−i π

4 (Z0+Z1 ) = e−i π
4 Z0 e−i π

4 Z1 , i.e., Rz,01ĤAIMR†
z,01 = ĤAIM,

so [ĤAIM, Rz,01] = [ĤAIM, R†
z,01] = 0 and [U (t ), Rz,01] =

[U †(t ), Rz,01] = 0. Since the ground state |ψ0〉 of ĤAIM

is not degenerate and [ĤAIM, Rz,01] = 0, |ψ0〉 must be
the eigenstate of the unitary operator Rz,01. Therefore,
Rz,01 |ψ0〉 = eiφ |ψ0〉, R†

z,01 |ψ0〉 = e−iφR†
z,01eiφ |ψ0〉 =

e−iφR†
z,01Rz,01 |ψ0〉 = e−iφ |ψ0〉, and 〈ψ0| Rz,01 = 〈ψ0| eiφ .

Now we can prove, for example, 〈Y0(t )Y0〉 = 〈X0(t )X0〉,
〈Y0(t )Y0〉 = 〈U †(t )Y0U (t )Y0〉ψ0

= 〈U †(t )Rz,01X0R†
z,01U (t )Rz,01X0R†

z,01〉ψ0

= 〈Rz,01U
†(t )X0R†

z,01Rz,01U (t )X0R†
z,01〉ψ0

= 〈U †(t )X0U (t )X0〉ψ0 = 〈X0(t )X0〉.
Similarly, we can prove 〈Y0Y0(t )〉 = 〈X0X0(t )〉.

To prove Eq. (B2b), we use the time-reversal symmetry of
the Hamiltonian T ĤAIMT −1 = ĤAIM. The time-reversal sym-
metry operator T = e−i π

2 (Y0+Y1+Y2+Y3 )K = Y0Y1Y2Y3K, where
the operator K takes the complex conjugation. T X0T −1 =
−X0 due to KX0 = X0 and Y0X0 = −X0Y0. T Y0T −1 = −Y0

due to KY0 = −Y0. Similar to the Rz,01 symmetry operator,
we have T |ψ0〉 = |ψ0〉 and T U (t )T −1 = U (−t ). Begin-
ning with the time-translation invariance result 〈Y0(t )X0〉 =
〈Y0X0(−t )〉, we prove 〈Y0(t )X0〉 = 〈Y0X0(t )〉 as follows:

〈Y0(t )X0〉 = 〈Y0X0(−t )〉 = 〈Y0U (t )X0U (−t )〉ψ0

= 〈T −1(T Y0T −1)(T U (t )T −1)

× (T X0T −1)(T U (−t )T −1)T 〉ψ0

= 〈Y0U (−t )X0U (t )〉ψ0

= 〈Y0U
†(t )X0U (t )〉ψ0 = 〈Y0X0(t )〉.

Similarly, we can prove 〈X0(t )Y0〉 = 〈X0Y0(t )〉.

APPENDIX C: SELF-ENERGY AND ITS DERIVATIVE
AT ZERO FREQUENCY

We drop the impurity “imp” subscript below for simplicity.
The retarded interacting impurity Green’s function of the two-
site AIM in the time domain has the form

iG(t > 0) = α1eiω1t + α1e−iω1t + α2eiω2t + α2e−iω2t

= 2α1 cos(ω1t ) + 2α2 cos(ω2t ), (C1)

where 2α1 + 2α2 = 1 due to the spectral function sum rule. To
extract the poles ω1,2 and amplitudes α1,2, instead of fitting the
sampled time series with the above function form [12,20,49],
we obtain ω1,2 directly from the discrete Fourier transform
of the data, according to the analytic Fourier transform of
Eq. (C1) given by

G(ω) = α1

ω − ω1
+ α1

ω + ω1
+ α2

ω − ω2
+ α2

ω + ω2
. (C2)

The noninteracting Green’s function is given by G0(ω) =
1/2

ω−V + 1/2
ω+V . The self-energy is then given by Dyson’s equa-

tion as follows:

�(ω) = 1

G0(ω)
− 1

G(ω)
(C3)

= ω2 − V 2

ω
−

(
ω2 − ω2

1

)(
ω2 − ω2

2

)
2ω

[
ω2(α1 + α2) − (

α1ω
2
2 + α2ω

2
1

)] .

(C4)

Since G0(0) = G(0) = 0, if the divergences of G−1
0 (ω) and

G−1(ω) do not cancel exactly at ω = 0, �(ω) diverges, re-
sulting unphysical pole and contradicting to the expected
behavior of self-energy before phase transition happens. So
the physically meaningful self-energy must satisfy the follow-
ing constraint, limω→0[ω�(ω)] = 0, which implies that

⇒ lim
ω→0

[
ω2 − V 2 −

(
ω2 − ω2

1

)(
ω2 − ω2

2

)
2
[
ω2(α1 + α2) − (

α1ω
2
2 + α2ω

2
1

)]
]

= 0

⇒ ω2
1ω

2
2

2
(
α1ω

2
2 + α2ω

2
1

) = V 2. (C5)

The constraint Eq. (C5) must hold exactly for the self-
energy to avoid any unphysical pole at ω = 0, which is usually
not the case with ω1,2 and α1,2 extracted from noisy data.
To regularize �(ω) at ω = 0 we impose Eq. (C5) directly,
plug it in Eq. (C4) for the self-energy, and then compute the
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derivative of the self-energy at ω = 0 as follows:

�(ω) = ω − V 2

ω
−

(
ω2 − ω2

1

)(
ω2 − ω2

2

)
2ω

[
ω2(α1 + α2) − ω2

1ω
2
2

/
(2V 2)

]

= ω − ωV 2
[
ω2 + 2V 2(α1 + α2) − (

ω2
1 + ω2

2

)]
2ω2V 2(α1 + α2) − ω2

1ω
2
2

,

(C6)

d�(ω)

dω

∣∣∣∣
ω=0

= lim
ω→0

�(ω)

ω

= 1 − V 2
[(

ω2
1 + ω2

2

) − 2V 2(α1 + α2)
]

ω2
1ω

2
2

. (C7)

Finally, using the sum rule 2α1 + 2α2 = 1, we obtain
Eq. (8) used in the main text to compute the quasiparticle
weight

Z = 1

/[
1 − dRe�(ω)

dω

]
ω=0

= ω2
1ω

2
2

V 2
(
ω2

1 + ω2
2 − V 2

) . (C8)

We remark here that, in addition to plotting Z in Fig. 6(a),
we also plotted in the inset Fig. 6(b) the local density of
states A(ω) = − 1

π
ImG(ω + iη), where G(ω + iη) is given

by Eq. (C2) with the small imaginary part η = 0.2 and α1,2

computed using the extracted frequencies ω1,2 as follows [ob-
tained from the sum rule and the Eq. (C5)]:

α2 = (ω1/V )2 − 1

2[(ω1/ω2)2 − 1]
, α1 = 1

2
− α2. (C9)

APPENDIX D: QUANTUM HARDWARE

The quantum hardware used in this work was
IBMQ_MANILA, a superconducting device with five qubits
and a linear qubit topology (qubits are sequentially labeled
from one end to the other). It is publicly available through
the IBM Quantum Experience. The experiment parameters
are designed around the open access quantum job submission
limits of five sets of 75 circuit evaluations of 8192 shots
each. Thus, we used two distinct solutions to the Cartan
decomposition which combine to a total shot count of
16 000 at each of 150 time step evaluations. The first set
was reserved for just in time measurement error mitigation
circuits, of which there are 32 circuits preparing each of the
25 computational basis states. Assuming a correct evaluation,
each DMFT Loop requires approximately 36 minutes to
execute on the IBM backend, including the measurement
error mitigation circuits. In practice, the update failure
condition results in repeated calculations and subsequently
increased runtimes for each V update. Tables I and II
show the qubit coherence times and the entangling gate
properties, respectively. The ancilla qubit was placed at index
0. Calibration data pulled from the QISKIT API [54], and
averaged by taking the calibration data at four points each
day between October 10, 2021 and November 10, 2021.

TABLE I. Average T 1 and T 2 coherence times for
IBMQ_MANILA, averaged over the period of time in which runs
were executed.

Qubit Number T 1 (μs) T 2 (μs)

0 (Ancilla) 146.18 ± 29.78 94.38 ± 18.50
1 204.64 ± 47.57 83.02 ± 15.18
2 148.79 ± 26.79 24.30 ± 2.55
3 157.19 ± 36.33 63.64 ± 7.83
4 128.96 ± 24.11 42.78 ± 2.57

APPENDIX E: VERIFICATION OF THE GROUND-STATE
PREPEARATION ANSATZ CIRCUIT

Since the ground state has two fermions with a total
spin Sz = 0, there must be one particle for each spin sector
and the Hilbert space H(N↑=1,N↓=1) of this symmetry sec-
tor is spanned by basis {|q0q1〉↑ ⊗ |q2q3〉↓} = {|10〉 , |01〉} ⊗
{|10〉 , |01〉} = {|φ1〉 = |1010〉 , |φ2〉 = |0101〉 , |φ3〉 =
|1001〉 , |φ4〉 = |0110〉}. Since ĤAIM |φi〉 ∈ H(1,1), we need
only solve the ground state within this matrix block H =
(〈φ1| , 〈φ2| , 〈φ3| , 〈φ4|)T ĤAIM(|φ1〉 , |φ2〉 , |φ3〉 , |φ4〉), where
the matrix elements Hi, j = 〈φi|ĤAIM|φ j〉 which are easily
evaluated using the Eq. (3) and the following basis transfer
matrix:

ĤAIM |φ j〉 = V (|φ3〉 + |φ4〉) + U

4
|φ j〉 , ( j = 1, 2), (E1a)

ĤAIM |φ j〉 = V (|φ1〉 + |φ2〉) − U

4
|φ j〉 , ( j = 3, 4). (E1b)

Noticing the symmetric form of the above equa-
tions, we can obtain a block diagonal matrix H′ =
(U/4 2V

2V −U/4) ⊕ (U/4
−U/4) using the following new basis:

|φ′
1〉 = (|φ1〉 + |φ2〉)/

√
2, |φ′

2〉 = (|φ3〉 + |φ4〉)/
√

2, |φ′
3〉 =

(|φ1〉 − |φ2〉)/
√

2, |φ′
4〉 = (|φ3〉 − |φ4〉)/

√
2. The second

block gives the following (eigenvalue, eigenvector) of ĤAIM:
(U/4, |φ′

3〉) and (−U/4, |φ′
4〉). The first block (U/4 2V

2V −U/4)

gives the eigenvalues ±
√

4V 2 + (U/4)2 and both eigenvec-
tors must have the same wave-function form that is a linear
combination of two basis vectors cos α |φ′

1〉 + sin α |φ′
2〉 (with

different α values for different eigenvalues).
Comparing the eigenvalues, we conclude that the exact

ground state has the eigenenergy −
√

4V 2 + (U/4)2 and the
wave-function form cos α√

2
(|1010〉 + |0101〉) + sin α√

2
(|1001〉 +

|0110〉). Now we verify that the ansatz circuit in Fig. 3(a)
prepares the exact ground-state wave-function form by ap-
plying the gates sequentially on the initial state |0000〉. For
example, after the first four X gates, |0000〉 → |1111〉; after

TABLE II. Average CNOT error rates and gate timings on
IBMQ_MANILA.

Connection CNOT error rate Gate timing (ns)

0–1 0.0070 ± 0.0012 295.11 ± 17.78
1–2 0.0099 ± 0.0017 487.11 ± 17.78
2–3 0.0071 ± 0.00080 373.33 ± 17.78
3–4 0.0076 ± 0.0016 316.44 ± 17.78
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the next gate Rx(θ ) = e−i θ
2 X2 = cos θ

2 − i sin θ
2 X2, |1111〉 →

cos θ
2 |1111〉 − i sin θ

2 |1101〉; after the next CX2,1, the state
becomes cos θ

2 |1011〉 − i sin θ
2 |1101〉, and so on. The state at

the end of the ansatz circuit is |ψ0〉 = cos(θ/2+π/4)√
2

(|1010〉 +
|0101〉) + sin(θ/2+π/4)√

2
(|1001〉 + |0110〉), which agrees with

the aforementioned exact ground-state wave-function form.

APPENDIX F: DETECTION OF FREQUENCY-DOMAIN
GREEN’S FUNCTION PEAKS

1. High-frequency peaks

As mentioned in the main text, we first detect the high
frequency (ω2) peak and then the low frequency (ω1) peak.
For all investigated values of U , along the course of the DMFT
iterations, the amplitudes (α2) of the high frequency (ω2)
peaks remain significant compared to the level of noise. Thus,
we enforce a strict criterion on peak height when detecting the
correct frequency-domain Green’s function peaks from noisy
data. This is done by searching for up to two most prominent
peaks with an amplitude greater than two standard deviations
above the mean signal strength (essentially corresponding to
the background noise). The search is initially only limited
in a narrow range around the “expected” frequency, i.e., a
small window centered around the detected ω2 of the previous
iteration. An “expected” frequency region for ω1 is defined
similarly and masked off when searching for ω2. In the event
a peak is not located within the largest search area, the itera-
tion is rerun and Green’s function is recomputed. When two
prominent peaks are detected, the higher amplitude peak is
selected. Peak detection is performed using the SCIPY.SIGNAL

library function FIND_PEAKS.

2. Low frequency peaks

In or near the insulating phase, the amplitudes (α1) of the
low frequency (ω1) peaks vanish near convergence. We there-
fore reduce the peak height requirement of the peak search
as the iterations converge. The criteria are listed as follows,
in the order of increasing peak height requirement. The later
steps are only used if the previous step returns more than two
peaks for the given threshold.

(1) Are there either one or two peaks above the average?
(2) If no, are there either one or two peaks one standard

deviation above the average?
(3) If no, are there either one or two peaks two standard

deviations above the average?
(4) If no, rerun the entire iteration for both ω1 and ω2.
If at any point the answer is yes, take the most prominent of

the one or two peaks as ω1. For high amplitudes, lower thresh-
olds will lead to too many peaks, and increased strictness will
eliminate theses extraneous peaks. For low amplitudes, the
iteration is more likely to fail or choose an extraneous peak
by merit of a much lower signal-to-noise ratio. For all search
regions, any aliased frequencies from ω2 are eliminated from
the search. Near the search boundaries, extraneous peaks are
often detected and eliminated from the result.

APPENDIX G: TOTAL FIDELITY ESTIMATE OF
HAMILTONIAN SIMULATION ALGORITHMS

The total fidelity Ftot of two Hamiltonian-based time evo-
lution algorithms, Trotter and Cartan, is modeled as follows.

Assuming independent physical and algorithmic errors, the
multiplicativity of the fidelity from orthogonal sources is

Ftot = FalgFruntime, (G1)

where the factor Falg takes into account of the algorithmic
error and Fruntime is a function of the counts and fidelity of
CNOT gates in the circuits used in the runtime.

In the case of the Cartan decomposition circuit, the algo-
rithmic fidelity is very near unity (to within classical machine
errors). We estimate a runtime fidelity Fruntime = (FCNOT)77 as
the circuit execution required 77 CNOTs, which dominate the
runtime-errors. Although this presents a very simplified error
model, it captures the qualitative scaling of the errors accrued
while running the algorithm.

The second-order Trotter-Suzuki formula is given by

U2(t f , r) = [(
e−i(t f /2r)H0 · · · e−i(t f /2r)Hm−1

)
× (

e−i(t f /2r)Hm−1 · · · e−i(t f /2r)H0
)]r ≡ [Ũ2(τ )]r,

(G2)

where r is the number of Trotter steps, t f is the final simulation
time, τ = t f /r, and m is the number of noncommuting sets of
terms in the Hamiltonian. For a system with m = 2 such as
ours, a single step simplifies to

Ũ2(τ ) = e−i(τ/2)H0 e−iτH1 e−i(τ/2)H0 . (G3)

Combining multiple second-order Trotter steps further re-
duces the decomposition to

U2(t f , r) = ei(τ/2)H0 (e−iτH0 e−iτH1 )re−i(τ/2)H0 (G4)

≡ ei(τ/2)H0U1(t f , r)e−i(τ/2)H0 , (G5)

where the first-order Trotter formula is defined as U1(t f , r) =
(e−iτH0 e−iτH1 )r . The above connection between first-order and
second-order Trotter formulas is a result specific for m =
2 [67].

Simulating r steps requires the same resources as would
first-order Trotterization, plus a single implementation of the
first H0 exponential on the right (the last H0 exponential on the
left can be absorbed into the last Trotter step). In this analy-
sis, we choose H0 = 1

4U (Z0Z2) and H1 = 1
2V (X0X1 + Y0Y1 +

X2X3 + Y2Y3). The CNOT costs for each step are two CNOTs
and four CNOTs, respectively. Each of the XiXi+1 + YiYi+1

(i = 0, 2) exponentials can be implemented using only two
CNOTs by diagonalizing each into single site Z rotations using
the Clifford element (HiHi+1)(S†

i S†
i+1)(CiXi+1)(Hi ⊗ Ii+1) to

diagonalize the terms. These simplifications give a total CNOT

count of 6r + 2. However, there is additional overhead due to
two SWAP gates (each using three CNOTs) needed to perform
the Z0Z2 exponential on linear connected hardware and the
three CNOTs included in the VQE ground-state preparation.
The runtime fidelity is given by Fruntime = (FCNOT)(6r+11) for
total 6r + 11 CNOT gates.

The Trotter error is computed as a numerical fit for the co-
efficient of the asymptotic leading-order error term O(t3/r2)
using exact diagonalizaton of the actual unitary evolution op-
erator U (t ): ‖U (t ) − V (t )‖ ≈ 0.152t3/r2, where ‖ · ‖ is the
Frobenius norm.

023198-14



MAPPING THE METAL-INSULATOR PHASE DIAGRAM BY … PHYSICAL REVIEW RESEARCH 5, 023198 (2023)

The ‘maximum achievable fidelity” curve (solid thick blue
line in Fig. 7) is then given by optimizing Ftot over r ∈ R for
a fixed t f .

Our choice of the ttarget ≈ 8 threshold is given by the pe-
riod T1 of the low-frequency component ω1 = 0.884 or T1 =
2π/ω1 = 7.11 for our choice of parameters.
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