Abstract
We study the quantum Ising model on (2+1)-dimensional anti-de Sitter space using Matrix Product States (MPS) and Matrix Product Operators (MPOs). Our spatial lattices correspond to regular tessellations of hyperbolic space with coordination number seven. We find the ground state of this model using the Density Matrix Renormalization Group (DMRG) algorithm which allowed us to probe lattices that range in size up to 232 sites. We explore the bulk phase diagram of the theory and find disordered and ordered phases separated by a phase transition. We find that the boundary-boundary spin correlation function exhibits power law scaling deep in the disordered phase of the Ising model consistent with the anti-de Sitter background. By tracing out the bulk indices, we are able to compute the density matrix for the boundary theory. At the critical point, we find the entanglement entropy exhibits the logarithmic dependence of boundary length expected for a one-dimensional CFT but away from this, we see a linear scaling. In comparison, the full system exhibits a volume law scaling, which is expected in chaotic and highly connected systems. We also measure Out-of-time-Ordered-Correlators (OTOCs) to explore the scrambling behavior of the theory.